Food Standards Australia New Zealand Diet-Disease Relationship Review

Dietary fruit and vegetable intake and risk of coronary heart disease

Report Prepared by

Ms Elisabeth Winkler (Research Officer) Associate Professor Carla Patterson Professor Beth Newman School of Public Health *Queensland University of Technology*

July 2006

In late 1999, a Canadian report presented a comprehensive analysis of studies on the relationship between dietary fibre and risk of coronary heart disease (CHD) that were published in the scientific literature. In addition to grains and grain products, fruits and vegetables comprised the major sources of dietary fibre. The overall conclusion was: "Diets low in saturated fat and cholesterol and rich in high-fibre, intact foods, such as whole grains, fresh fruits and vegetables, may reduce the risk of heart disease, a disease associated with many factors." The research reviewed and analysed by the authors clearly provided ample support for the conclusion; however, the level of evidence for the relationship between fruit and vegetable consumption and risk of CHD was less apparent in the report. An independent review of the summaries presented in the Appendices, focusing on research projects specifically addressing fruit and vegetable intake and CHD risk, revealed fairly consistent support for an inverse association between consumption of fruits and vegetables and risk of CHD in observational studies. This is confirmed by a pooled reanalysis of data from eight of these studies described further in this report (Part 2 and Appendix 4). Evidence at that time from randomised, controlled trials, primarily examining the effect of fruit intake on lipid levels, was less consistent, showing null or beneficial effects. The current report now critically reviews studies researching the relationship between fruit and vegetable intake and risk of CHD published since 2000.

A total of 13 research projects were identified that investigated outcomes related to CHD morbidity or mortality, including 9 prospective cohort studies and 4 retrospective casecontrol studies. Irrespective of study design and specific outcome, and similarly for study populations differing by age, gender, or nationality, an inverse association was generally reported for fruit and/or vegetable intake and CHD risk. The magnitude of the association varied across studies, and in some cases did not approach statistical significance. Nevertheless, as intake of fruits and/or vegetables increased, risk of CHD morbidity and mortality tended to decrease. Results remained consistent, although sometimes attenuated, following statistical adjustment for many CHD risk factors and/or factors considered potentially intermediary in the causal pathway between diet and CHD risk. The overall inverse relationship was evident throughout the range of moderate fruit and vegetable consumption characteristic of Australian and New Zealand residents, although there is some indication that there may be a threshold in intake beyond which additional improvements in disease risk are not observed.

Although the exact mechanism/s for the observed inverse relationship is/are not known, there are ample reasons to consider the association biologically plausible. Fruits and vegetables contain biologically active compounds including fibre, anti-oxidant vitamins, and anti-oxidant phytonutrients, among others. In addition to consumption of these possibly beneficial substances, eating fruits and vegetables may displace other foods rich in various fats, energy, cholesterol or sodium, which themselves are considered adverse risk factors for CHD. And there are a number of physiological processes potentially involved in atherosclerosis underlying CHD that may be altered as a consequence of fruit and vegetable consumption. Research focused on the role of fruit and/or vegetable consumption in relation to biomarkers of CHD risk provides additional evidence of this (18 studies reviewed).

Increased intake of fruits and/or vegetables generally has been associated with lower levels of systolic and diastolic blood pressures in randomised, controlled trials. Whereas inverse associations between blood lipid levels and fruit and/or vegetable consumption are usually observed in cross-sectional studies, results in intervention trials are sometimes, but less consistently, beneficial. Few studies have investigated homocysteine and c-reactive protein levels, but early results lend support to lower levels with increased intake of fruits and/or vegetables.

Dietary research is noteworthy for its challenges, particularly when assessing usual diet within free-living populations. In particular, difficulties in measurement of food intake related to types of fruits and vegetables, serving sizes, and frequency of consumption are well documented, but generally lead to underestimation of true effects. Proper measurement and control for potential confounding factors also are important to preclude attribution of results to diet when they are, in fact, a consequence of other characteristics that are correlated with diet. And rigorous design and implementation for the ascertainment and recruitment of study participants are necessary to ensure generalisability of findings to the population of interest. The methods used by the reviewed studies had varying strengths and limitations, but few were sufficiently flawed to undermine confidence for a relationship between a diet rich in vegetables and/or fruits and reduced risk of CHD, which is sufficiently consistent and substantial to underpin policy recommendations.

PART 1: CRITICAL APPRAISAL OF PREVIOUS REVIEW OF THIS DIET-HEALTH RELATIONSHIP	1
1 (A)Appraisal of the selection and assessment of evidence in the review1 (b)Re-assessment of several pivotal studies cited in the review and considerationValidity of the review's conclusions	1 N OF THE
PART 2: REVIEW OF THE EVIDENCE RELEASED SINCE THE TIME OF THE CANADI REVIEW	
IDENTIFICATION OF RELEVANT STUDIES	
Search Strategy	
INCLUSION/ EXCLUSION OF STUDIES	
DEFINITION OF FRUITS AND VEGETABLES	3
MEASUREMENT AND ANALYSIS OF FRUIT AND VEGETABLE INTAKE	
BASES FOR QUALITY RATINGS	7
SUMMARY OF FINDINGS FOR RISK OF CHD Observational Studies: Cohort Studies	
Observational Studies: Conort Studies Observational Studies: Case-control Studies	
Overview	
Fruits and Vegetables	
Meta-analysis	17
SUMMARY OF THE EVIDENCE FOR AN ASSOCIATION WITH CHD	
PART 3: RELEVANCE OF THE FINDINGS TO AUSTRALIA AND NEW ZEALAND	25
CORONARY HEART DISEASE	25
<i>Types</i>	
Quantities Consumed	
LIFESTYLE BEHAVIOURS	29
PART 4: RELATIONSHIP OF DIETARY FRUIT AND VEGETABLE INTAKE WITH REL BIOMARKERS OF DISEASE OUTCOME	
CHD BIOMARKERS AS OUTCOMES	
Intervention Studies	
Blood lipids	
Blood Pressure	
Homocysteine	
Longitudinal Studies	
Cross-sectional Studies Blood Pressure	
Blood Lipids	
Homocysteine	
SUMMARY OF EVIDENCE FOR AN ASSOCIATION WITH CHD BIOMARKERS	
PART 5: CONCLUSIONS	
REFERENCES	44
APPENDIX 1: SEARCH DETAILS	
EBSCO Host	
ProQuest	
BLACKWELL SYNERGY	
APPENDICES 2-7: REVIEW TABLES FOR STUDIES FROM 2000 ONWARDS	

Part 1: Critical appraisal of previous review of this diethealth relationship

1 (a) Appraisal of the selection and assessment of evidence in the review

The search methodology used in the Canadian report, entitled 'Short Literature Review for Fruits, Vegetables and Grain Products that Contain Fibre, Particularly Soluble Fibre, and Coronary Heart Disease,' was generally appropriate and would have covered the majority of the relevant literature available to the authors over the time period covered. One ramification of the choice to search for "cardiovascular diseases NOT neoplasms" is the exclusion of any studies that looked at overall mortality and also cause-specific mortality from major causes including cardiovascular disease (CVD) and neoplasms. Such studies are often large prospective studies with a high-quality level of evidence. However, it is unlikely that this would have resulted in a systematic bias towards inclusion of studies with a null, positive, or negative association.

Largely, we agree with the inclusion/exclusion criteria outlined in the previous report, with some minor hesitancies, specifically relating to appropriate study populations and appropriate study endpoints. For example, on p11 of the draft report, the authors claim:

"Studies were excluded if the dietary intervention was conducted in subjects with diagnosed CHD or with a history of MI or coronary artery bypass surgery...Studies with healthy subjects or those with hyperlipidemia were included."

Findings need to be generalisable for primary prevention. We are assuming that the authors meant that valid population groups for studies were subjects at background risk for CHD, or with a major risk factor for coronary heart disease (CHD) (eg, hyperlipidemia, diabetes, hypertension), but not CHD itself. (The Canadian report described hypertension and hyperhomocysteinemia as risk factors for CHD along with dyslipidemia, therefore we assume that these at-risk groups were included rather than excluded.) We also are assuming that the authors did not exclude studies of general populations in which a minority of participants may have had prior CHD (which would be unnecessarily restrictive, especially since this issue can be addressed analytically).

Some studies included in our review cited studies that fit the time period of the Canadian review and were not found in the Canadian report. More careful review of these individual reports revealed that none were actually relevant to the question at hand, but rather addressed issues of tangential interest to the association between fruits, vegetables, or grain products that contain fibre and CHD risk. Overall their findings were supportive of an inverse association, but are not documented further in this report.

1 (b) Re-assessment of several pivotal studies cited in the review and consideration of the validity of the review's conclusions

Several of the studies cited in the Canadian report were independently reviewed, and in general, the authors of that report were accurate in summarising study findings, made reasonable comments on salient design and analytic issues, and presented an appropriate synthesis across studies. The report's conclusions are well substantiated by the papers available at that time. In brief, the overall conclusion was: "Diets low in saturated fat and cholesterol and rich in high-fibre, intact foods, such as whole grains, fresh fruits and vegetables, may reduce the risk of heart disease, a disease associated with many factors." Noteworthy in this conclusion are the two phrases (emphases added): *'fresh* fruits and vegetables' and *'may* reduce the risk of heart disease'. The current review may provide additional insights in relation to these statements.

Unfortunately, the focus of the Canadian report was on dietary fibre, including grain products as well as fruits and vegetables, and on soluble fibre in particular. Hence their emphasis was on the benefits of high-fibre, intact foods and fresh fruits and vegetables in their recommendation. In the context of the current report, the conclusions of the Canadian report and many of the included studies are of limited utility, because any beneficial effect of fruit and vegetable consumption in relation to CHD-related outcomes may be due to mechanisms unrelated to dietary fibre. In fact, most of the early studies included in the Canadian report, in which associations with intake of fruit and vegetables were addressed separately, showed inverse relationships with CHD morbidity or mortality and to a lesser extent lipid levels. This evidence is now followed up in the current report with a critical review of the scientific literature available from 2000-2005.

Part 2: Review of the evidence released since the time of the Canadian review

Identification of relevant studies

Search Strategy

Three major databases were searched: EBSCO Host, ProQuest, and Blackwell Synergy. Each search was conducted only of scholarly literature published from 2000 onwards. Searches were tailored to each database to minimise the chances of excluding relevant literature. The search terms for each database are provided in Appendix 1. (Hard-copy results from each search results are provided separately.) Additionally, reference lists contained in located articles and reviews were checked for any additional studies that appeared to relate to the topic.

Inclusion/ Exclusion of Studies

Articles and abstracts were scanned for relevance. Those not relevant because they were clearly unrelated to the topic of the health claim or reported research on non-human subjects were discarded. Articles that reported on studies published elsewhere were not included, but were used as an additional source to locate potentially relevant studies.

All relevant studies identified were summarised. Studies were included if they evaluated the relationship between CHD or its biomarkers and fruits and/or vegetables in whole or juice form. These studies may have tested sub-groups of fruits or vegetables, such as cruciferous vegetables or citrus fruits. Studies were excluded if they only tested the effects of a single fruit or vegetable (such as kiwifruit), extracts made from fruits and vegetables, or nutritional components of fruits and vegetables (such as vitamin C, antioxidants or fibre).

Intervention studies were included if they were conducted on healthy populations or those at higher risk of CHD (eg, with hyperlipidemia, hypertension). Interventions focusing on those with CHD were excluded.

Definition of Fruits and Vegetables

This review did not employ an *a priori* definition of fruits and vegetables, but rather used the definitions applied in the reviewed studies. These are described in the contexts of the reported findings and further addressed in Part 3 with respect to relevance of the findings for Australia and New Zealand. Claims cannot be substantiated on the basis of this review for types of fruits and vegetables that have not been considered by the authors of the original studies.

Some further caveats are worth noting. Fruits and vegetables are nutritionally heterogeneous. They each have multiple sub-group classifications and there are important nutritional differences both between and within these subgroups of fruits and vegetables. The studies in

this review generally were inclusive of vegetables. Notable exceptions are potatoes, which were often excluded from vegetable classifications, and legumes which were sometimes excluded or considered separately. The basis for these exclusions lies in the important nutritional dissimilarities between these and other vegetables. Potatoes were often excluded because they have a comparatively low content of substances expected to protect against CHD (such as vitamin C and other antioxidant vitamins) and a relatively high caloric content. Since potatoes contribute a substantial proportion to total vegetable intakes in many western populations, their exclusion is necessary to avoid distorting results. Legumes also warrant unique consideration, as their relatively high protein and caloric content, the amount and types of dietary fibres they contain, and their importance in vegetarian diets suggest they could have unique cardio-protective contributions that might be dissimilar to other vegetables. In addition, FSANZ specifically requested the exclusion of legumes from this review. Unlike potatoes, legumes contribute much smaller proportions to total vegetable intake in western populations and their inclusion in some studies is unlikely to have affected results. Researchers did not exclude any types of fruits in their studies.

The nutritional content (and therefore potential cardiovascular benefit) of fruits and vegetables are affected by many factors, such as growing conditions, harvesting, storage, processing, and preparation methods. The first three of these factors are unrealistic to capture in population research and their variation within and across populations may contribute to some heterogeneity in findings. Processing is potentially important as the nutritional content of fresh, frozen and canned fruits and vegetables varies for key nutrients which have physiological relevance for mechanisms of CHD aetiology (particularly vitamin C and folate). Some studies included only fresh vegetables, while others explicitly included frozen and canned vegetables, and others did not specify. Many studies employed food frequency questionnaires to measure dietary intake, which assessed the intake of mixed dishes but did not include these in the measures of fruit and vegetable intake. In addition, it should be noted that forms of processing used in developing appealing combined food products may have a different effect on nutritional quality and subsequent cardio-protection than freezing and canning, which are preservation techniques specifically designed to maximise product quality and minimise nutrient losses. Some studies included and others excluded fruits and vegetables consumed in juice form, although the contribution of juices to total intake was not clear. In juice form, fruits and vegetables lack the fibre they contain as whole foods, and therefore may not offer the same health benefits. Hence some heterogeneity in findings across studies may be due to the forms of the fruits and vegetables that ultimately were included in individual data analyses.

Measurement and Analysis of Fruit and Vegetable Intake

Accurate and valid measurement of the intake of fruits and vegetables is difficult [1]. The most commonly used and widely accepted techniques are weighed records, the diet history method (sometimes including a frequency cross-check), the 24-hour recall, and the food frequency questionnaire [2]. Direct observation is rare, and biomarkers (such as serum carotenoids or plasma vitamin C) are sometimes used, albeit typically in conjunction with other intake measures, as physiologically these biomarkers are not expected to correlate perfectly with intake [1, 3]. Each dietary assessment method has different strengths and weaknesses, and each may generate different estimates of the association between fruit and

vegetable intake and disease risk [4]. All the common methods used by studies in this review involve participants' self-report, which is subject to 'social desirability bias' and is problematic in that participants may under-report total food and energy intake, and intake of foods believed to be unfavourable to the researchers [5, 6], and perhaps over-report consumption of foods they perceive as healthy such as fruits and vegetables [7, 8].

Weighed records, diet histories and 24-hour recalls collect information on foods consumed, rather than food categories, and thus can obtain more detailed information than can food frequency questionnaires, for example about the types of fruits and vegetables people consume. In addition to the level of detail, intake assessment methods vary in their level of accuracy in quantifying total food intake. Weighed records are considered the most accurate dietary intake assessment techniques [9] and are the only measure that does not require participant recall. However, they can underestimate usual total intake, as respondents often temporarily change their food habits to accommodate having to weigh and report every item they consume [5]. Multiple 24-hour recall techniques are less accurate than weighed records, but considered superior to dietary histories or food frequency questionnaires [9]. Diet histories conducted by trained professionals can be accurate, especially if used in conjunction with food models or other visual tools to assist participants in judging portion sizes [2]. Food frequency questionnaires are the simplest and least costly to implement on a wide scale [7]. however their quality varies widely. Some assess only the frequency of food intake, while semi-quantitative food frequency questionnaires include portion size information to measure quantities of daily intake. Their validity is usually established relative to one of the more accurate methods in a study sub-sample, however the quality of the 'validation' also depends on the quality of the reference assessment method [7].

Validation for nutrients of which fruits and vegetables are key sources (such as vitamin C) is more indicative of a valid fruit and vegetable assessment than validation for other micro- and macro- nutrients, such as fat intake or energy intake. Food frequency questionnaires that specify particular fruits and vegetables often yield higher intake estimates relative to other methods [10]. Food frequency questionnaires may show poor validity at the individual level, however they are often sufficient to classify individuals into quintiles of intake [11, 12]. Inaccuracy in all methods of dietary measurements means that some extent of misclassification bias is likely in all studies – however this bias is minimised in studies using the more accurate methods (multiple weighed records, multiple recall methods, dietary histories or high quality food frequency questionnaires) and is probably greater in studies using less accurate dietary intake methods (such as lower quality food frequency questionnaires, especially for those with low validity). Generally this misclassification results in under-estimations of true relationships with outcome variables [7, 12].

The time period of exposure also is a source of difficulty in meaningfully connecting dietary exposures to disease outcomes. Diets generally vary from day to day as well as over longer periods throughout the lifecourse. Further, the time period of importance may be different, depending on the mechanism of protection/damage, as some nutrients may be ingested intermittently but are cumulative, while others are not stored and therefore require regular intake to have an impact. Studies generally treat dietary effects as cumulative in terms of their effect on CHD, however no measure provides an accurate cumulative measurement of diet over a lifetime. Different methods vary in the time periods over which they assess diet, and

ususally measure current diet (eg. weighed records, multiple recalls) or diet over the last month, several months or year (eg. food frequency questionnaires). It is not known which dietary assessment method reflects the most appropriate temporal dietary exposure in terms of CHD prevention.

Where authors have used dietary assessment tools capable of quantifying dietary intake, by convention they generally describe findings in terms of metric quantities or 'servings'. In most papers reviewed, servings are typically USDA servings, which are approximately 150g and equivalent to a medium-sized piece of fruit, ½ cup of cooked vegetables or 1 cup of salad vegetables [13]. This is the definition of 'serving' employed by this review, which is roughly equivalent to sample serves in the Australian core foods approach to healthy eating [14]. However, dietary assessment methods that seek to gauge frequency rather than quantity of intake may allow participants to determine what constitutes a serving, and this may not equate to sample serves or USDA servings. For simplicity, this review uses the term portion when the term serving may not apply.

Finally, there are two problematic issues in relation to the statistical analysis of fruit and vegetable consumption and risk of CHD and related outcomes. First, there is the question of how the measure of intake is analysed. Some studies used dietary information as grams/day (ie, a continuous variable), while most categorised the dietary exposure, usually into quartiles or quintiles (ie, ordinal variables), but some simply indicated above or below some threshold (ie, dichotomous variable). Clearly the size of the risk reduction is influenced by the specific definition used, which is why we have not attempted to summarise the magnitude of the association between fruit and vegetable intake and risk of CHD. Instead, we have focused on the quality of the study in relation to its individual results and evaluating consistency in direction of the association across studies. More formal meta-analysis or pooled analysis is necessary to estimate the average effect size across the various studies.

The second analytic issue relates to statistical adjustment for other dietary characteristics, in particular total energy consumption. The dilemma is that energy intake may serve as a confounder (ie, independently related to the outcome and to the exposure of interest – fruit and vegetable intake), or it may lie on the causal pathway (either preceding fruit and vegetable intake or as an intermediary along the way to the CHD outcome). In the former case, adjustment is necessary to estimate the independent association with fruit and vegetable intake, whereas in the latter situation, controlling for energy would result in over-adjustment and an underestimation of the true RR or OR. Willet (1997) argues that studies of dietary intake and CHD should adjust for energy intake [15], as it is generally shown to reduce the risk of CHD. Also, people who consume more energy also generally consume more of most specific nutrients. Therefore, failure to adjust for energy intake can lead to a false conclusion that virtually all nutrients are associated with reduced risk of CHD. Adjustment for body mass index (BMI) and physical activity (which was common in the studies in this review) partially but not wholly removes this effect. Confounding is strongest for intake of energy carrying nutrients (such as fat), but also applies to other dietary intakes (such as intake of fruits and vegetables). Some of the studies in this review did not adjust for energy intake, while others did, using a variety of analytic methods. Furthermore, the adequacy of the adjustment may be limited by the use of categorical variables for dietary measures rather than the preferred continuous variable form. The similarity in the results across studies that

did and did not adjust for energy suggest that confounding by energy intake did not produce the observed risk reductions. However, the true size of the risk reductions in individual studies cannot be known with certainty.

Bases for Quality Ratings

The quality of the evidence provided by each study is multi-faceted and unable to be fully captured by a single score. Issues related to measurement and analysis of fruit and vegetable intake are discussed above. Furthermore, each study design has methodological strengths and weaknesses (eg, RCT, cohort, case-control, cross-sectional), and some studies manage to control the potential pitfalls of their chosen study design more effectively than others. Accordingly, this review separates the evidence by study design type and discusses the ways in which limitations of the study are likely to overestimate or underestimate the true relationship between fruit and/or vegetable intake and the coronary outcome measure. In addition, the quality of the studies is briefly summarised in the tables with a simple A, B, C rating – based on subjective appraisal of how well the study design was implemented and therefore able to substantiate the study's conclusions. It must be emphasised that this is not a validated quality measure but rather a visual tool to assist in reading the tables and should be used in conjunction with the other aspects of quality.

Quality Rating -

- A- Well-conducted study, very minor problems only, unlikely to alter conclusions.
- B- Generally well-conducted study, some limitations, may underestimate the true effect but unlikely to produce a type I error.
- C- Study with serious limitations that are likely to substantially alter the conclusions, or which may have produced a type I error.

Summary of Findings for Risk of CHD

We now summarise the scientific literature on the possible relationships between fruit and vegetable consumption and CHD risk and mortality. The studies in this section are considered the most relevant, as CHD is the outcome under investigation in each of these studies, hence the findings are most directly relevant to the question posed. The statistics most commonly used to report the results are the relative risk (RR) for cohort studies and the odds ratio (OR) for case-control studies. The OR actually provides an estimate of the RR, so we focus our description here on that measure. A RR is simply the ratio of two absolute risks: the numerator is the absolute risk among those with the factor, while the denominator is the absolute risk among those without the factor. If exposure to a factor increases risk of disease or other outcome, then the RR will be great than 1.0; conversely, if the exposure reduces the risk of the outcome, the RR will be less than 1.0. The statements that 'the RR=0.85' or that 'the risk is reduced by 15%' are considered equivalent, keeping in mind that the comparison is between exposed and unexposed groups. The confidence intervals give the reader an idea of the uncertainty in the estimated RR or OR relative to the *true* RR or OR; it gives the *range* of estimates in which the *true* RR or OR lies.

At the end of Part 2, Table 1 summarises key features of each of the identified relevant studies. This is followed by some discussion of the possible underlying mechanisms to address the biological plausibility of the observed associations. In Part 3, we provide external information about diet and lifestyle among Australian and New Zealander populations. In Part 4, we review additional studies that focus on outcomes related to CHD risk factors, to provide further insight into the nature of the observed relationships. Tables in Appendices 2-4 then present details on each of the cited studies. Appendix 2 presents prospective observational studies (cohort), while Appendix 3 presents retrospective observational studies (case-control) and Appendix 4 presents meta-analyses (only one was identified). Additional Appendices appear for the studies reviewed in Part 4.

Observational Studies: Cohort Studies

Nine cohort studies [13, 16-22] were located, which evaluated whether intake of fruits, vegetables or both was related to subsequent development of CHD. They are discussed below in chronological order of publication. Most (n=7) address combined fruit and vegetable consumption, in addition, in some cases, to subgroups of fruit and/or vegetable intake. One (#4) addresses fruit intake, and another (#9) addresses vegetable consumption only. All of the associations tested between consumption of fruits, vegetables, or both and diagnoses related to CHD revealed inverse relationships (16 of 16). Of these, 14 were statistically significant in at least one stratum, or on a per serve basis. The eight studies that also tested the associations in population subgroups reported inverse relationships, and seven of these included statistically significant results (see Table 1 on page 19).

These studies provide the best quality evidence currently available for the hypothesis that fruit and/or vegetable intake reduces risk of CHD. Their prospective design ensures that the exposure (fruit and/or vegetable intake) precedes the outcome (CHD morbidity or mortality). However, because they are observational studies, potential confounding must be addressed in statistical analyses. When adjusted results are quite similar to unadjusted results, we report the latter to take advantage of the tighter confidence intervals; however, we acknowledge when statistical significance is lost as a consequence of further adjustment. Furthermore, the impact of incomplete participation, as a consequence of original ascertainment or recruitment difficulties or loss-to-follow-up, must be considered in relation to internal validity and generalisability of findings.

CHD Study 1: Liu and colleagues, 2000, studied almost 40,000 women health professionals in the U.S., with no prior history of CVD [13]. They explored the relationship of combined fruit and/or vegetable intake at baseline with two outcomes: myocardial infarction (MI) or CVD incidence over a 5-year follow-up period. They also tested associations with CVD in a subgroup that did not have either diabetes, history of hypertension, or history of high cholesterol at baseline on the premise that these conditions may affect participants' food intake. Comparing the highest with lowest quintiles of combined fruit and vegetable intake (which averaged 10.2 and 2.6 serves per day, respectively), risk of MI was substantially reduced (approximately 40%) but was not statistically significant (RR=0.62; 95%CI: 0.37-1.04). Estimates were statistically significant in quintiles two (average 4.1 serves/day; RR=0.49; 95% CI: 0.28-0.85) and four (average 7.1 serves/day; RR=0.50; 95% CI: 0.28-0.86). Risk of CVD in the general sample was reduced by approximately 15-25% for all quintiles beyond the first (none statistically significant), with or without adjustments for potential confounding and intermediary factors. However in the sub-sample without CVD co-morbidities, a significant and large risk reduction of 55-60% was observed for CVD, depending on the extent of adjustment conducted.

Similar results were observed when fruits and vegetables were analysed separately. When comparing the highest with lowest quintiles of **fruit intake** (which averaged 3.8-3.9 and 0.6 serves per day, respectively), the risk of MI among all participants and the risk of CVD among those without common CHD-related disorders at baseline were substantially reduced (approximately 40%; statistically significant for MI only). Risk of CVD for all participants was reduced minimally (4%). When comparing the highest with lowest quintiles of **vegetable**

intake (which averaged 6.8-6.9 and 1.5 serves per day, respectively), there were no significant associations with either CVD or MI among all participants. However among women without common CHD-related disorders at baseline, the risk of CVD was substantially and significantly reduced (approximately 55%) before and after statistical adjustment for potential confounders.

None of the associations described above reflected typical dose-response relationships; in most cases, reductions in risk for either endpoint became apparent with the second quintile of consumption of fruits, vegetables, or both. Most known potential confounding factors were considered, although some residual confounding is possible, as no adjustment was made for energy intake. Considering the magnitude of the observed inverse associations, this is unlikely to account for the reported findings. The dietary assessment method was appropriate, minimising the chance of misclassification bias. Overall, this study provides substantial support for an inverse relationship between consumption of fruits and vegetables and CVD.

CHD Study 2: Joshipura and colleagues, 2001, reported on the 8-year follow-up of over 84,000 women (aged 34-59 years at baseline) and over 42,000 men (aged 40-75 years at baseline), all of whom were health professionals and had no history of CVD, diabetes or cancer at baseline [17]. They found a significant reduction in CHD risk of approximately 4% with each additional daily serve of **fruits and vegetables** (RR=0.96; 95% CI: 0.94-0.99). This was reflected in a 20% risk reduction (RR=0.80; 95% CI: 0.69-0.93) among those consuming the highest compared with the lowest quintiles of fruit and vegetable intake, which had average daily intakes around 10 and 3 serves, respectively. Importantly, risk reduction with each additional daily serve of vitamin C-rich fruits and vegetables was slightly greater than the findings for any fruits and vegetables (6%; RR=0.94; 95% CI: 0.88-0.99).

They also found a significant, 6% reduction in risk of CHD with each additional daily serve of **fruit** (RR=0.94; 95% CI: 0.90-0.98). This was reflected in a significant 20% risk reduction in the top two highest quintiles compared with lowest quintiles of fruit intake, which had average daily consumptions around 4 servings and 1 serve, respectively. A non-significant 5% reduction in risk was observed with each additional daily serve of citrus fruits, but there was no association with citrus juice intake. Similarly, a significant, inverse association was observed for **vegetable** intake and CHD, with a 5% reduction in risk per daily serve of cruciferous vegetables (14%) and green leafy vegetables (23%). (Larger reductions were observed for the subgroups because total vegetable intake included potatoes and legumes, neither of which was inversely associated with CHD risk; hence the relative risk estimate for all vegetables in this study probably underestimates the true inverse relationship.) As for fruit, for each of these three vegetable categories, reductions in CHD risk were evident for both quintiles 4 and 5 relative to quintile 1.

The relationships in this study were independent of a large number of potential confounders. Also, further adjustments for fibre (and other dietary) intake did not substantially alter results, indicating fibre is unlikely to be the only component of fruits and vegetables responsible for the observed inverse associations. Subgroup analyses showed fruits and vegetables were similarly protective for persons with or without hypertension or diabetes, and for men and women, but were slightly more protective for non-users than users of multivitamins and for current smokers than never or past smokers. The research used high-quality food frequency questionnaires, which still have some potential for misclassification of dietary intakes. However, this is more likely to lead to null findings than a significant inverse association and has less effect on comparisons between the upper and lower quintiles of intake. Generally the conclusions of this study are quite robust; however the analyses for some types of vegetables were limited by the very low intakes in the study population (eg. median intakes for highest versus lowest quintiles were 0-2 for citrus fruit, 0-1 for citrus juice, 0-1 for cruciferous vegetables, and 0-1.5 for green leafy vegetables).

CHD Study 3: Bazzano and colleagues, 2002, used 19-year follow-up data from the National Health and Nutrition Examination survey cohort of over 9,000 men and women aged 25-47 years and free of CHD at baseline [18]. They found significant, inverse relationships between frequency of **fruit and vegetable** consumption and mortality from ischemic heart disease (IHD) and CVD mortality, after considering age, race, gender and energy intake as possible confounders. Reductions of about 35% were observed for consuming fruits and vegetables 3+ times per day compared to <1 time per day (RR=0.66; 95% CI: 0.49-0.90 for IHD mortality; and RR=0.63; 95% CI: 0.51-0.79 for CVD mortality). Consideration of several other potential confounders attenuated the relationships, attenuating results to 25% reduction for both IHD and CVD mortality relationships showed significant dose-response trends. Results for IHD incidence showed a smaller magnitude of association (15% reduction when minimally adjusted), were not statistically significant and were generally considered inconclusive.

Some possibility for residual confounding exists as this study did not consider dietary confounders other than energy intake. Furthermore, the dietary assessment method had potential for misclassification, as it classified intake by frequency only (not quantity). One other methodological issue to consider is a small possibility of reverse causality. While the study excluded participants who used heart disease medications, or had a history of heart attack, heart failure or stroke at baseline, the study did not specify a minimum period between dietary assessment and outcome, and diet over "the last three months" may have been affected by illness. However, as this was a cohort study of long duration, it is unlikely that a substantial number of dietary assessments were taken immediately prior to the measured outcomes. This study also includes a more representative sample of participants than cohorts comprised of health professionals; however, their somewhat younger ages at baseline may have compromised the number of outcome events observed. Overall, the results of this study are considered supportive of an inverse relationship between fruit and vegetable consumption and IHD and CVD, but for mortality only.

CHD Study 4: Appelby and colleagues, 2002, reported on the 18-24-year follow-up of 10,741 'health conscious' British adults aged 16-89 years and enrolled in the Health Food Shoppers study [23]. No details on recruitment were provided. Participants were free from known cancer (except melanoma) at baseline, however participants with other health conditions, including CHD, were not excluded. Participants' dietary and other lifestyle habits and demographic characteristics were measured in a 'diet and lifestyle questionnaire'. Intake of at least one serve of **fresh fruit** daily was associated with significant reductions in

mortality from IHD (approximately 25%) and from all causes (approximately 20%). Risk reductions for IHD mortality were greater for women (48%) and non-smokers (33%), although this may reflect differences in distributions of intake rather than biologically different effects of fruit in these subgroups. Results were adjusted for many potential confounders, however several others were not considered (such as intake of energy, fat, saturated fat, physical activity). Dietary measurement was crude but likely sufficient to classify individuals above and below the one-serve threshold. The study deliberately included a 'health conscious' sample who may not reflect the general population, and thus findings are of limited generalisabilty. Furthermore, the study did not exclude participants with a baseline history of CHD, limiting the applicability of results for primary prevention. While this study was large and had a long follow-up period, its overall quality is considered low despite the fact that it produces similar findings to other studies.

CHD Study 5: Steffen and colleagues, 2003, reported on the 11-year follow-up results from the Atherosclerosis Risk in Communities (ARIC) Study, which included almost 12,000 men and women, aged 45-64 years at baseline and with no history of CVD, diabetes or cancer [20]. They found a linear, roughly dose-dependent relationship between **fruit and vegetable intake** and incidence of coronary artery disease (CAD) (when adjusted for energy intake, age, race and sex). This amounted to a significant 40% reduction in risk for the upper compared with lower quintiles of intake (RR=0.59; 95% CI: 0.42-0.81), who consumed averages of 7.5 and 1.5 serves per day, respectively. The reduction in risk was reduced substantially to around 15% and was no longer statistically significant following additional adjustment for other possible risk and intermediary factors. In race-specific sub-group analyses, this study found a significant \approx 60% reduction in CAD risk for African Americans, comparing the upper and lower quintiles of intake after all adjustments were made (RR=0.37; 95% CI: 0.17-0.80), but no reduction in CAD risk for white Americans.

The apparent racial difference in association may represent metabolic differences or cultural differences in patterns of consumption, eg, the types and serving sizes of fruits and vegetables consumed; however, it should be noted that confidence intervals were relatively large and overlapped for the two groups. A food-frequency questionnaire was used for dietary assessment, similar to that used by most other cohort studies. The community-based nature of the study makes it one of the most potentially generalisable; however, this is compromised by the limited response rate of 60%. Overall, this study provides more limited support for the hypothesis under study.

CHD Study 6: Rissanen and colleagues, 2003, conducted a study in Finland (the Kuopio Ischaemic Heart Disease (KIHD) Risk Factor Study) comprised of just under 2000 men, aged 42-60 years and with no history of CVD at baseline. Using data from 12.8-years of follow-up, men in the upper quintile, who consumed at least 400g per day of **fruit and vegetables,** had a statistically significant \approx 57% reduction in CVD-related death relative to those in the lowest quintile who consumed less than 133g daily (RR=0.43; 95% CI: 0.24-0.76, adjusted for age and education). This result was slightly attenuated to a relative risk of 0.56 (p=0.05) with additional adjustment for smoking and alcohol intake, and was still substantial (RR=0.61), but no longer statistically significant, after further adjustment for possible intermediary factors (lipids, diabetes, blood pressure, BMI and cardiovascular fitness). After adjustment for intakes of nutrients in fruits and vegetables (vitamin C, E, beta-carotene,

lycopene, folate, fibre), fruits and vegetables continued to carry a 34% reduction, leading the authors to comment constituents other than these are likely to contribute to the protective effect of fruits and vegetables. The authors reported that intakes of folate and vitamins C and E accounted for 36% of the protective effect of fruits and vegetables on CVD mortality. Four-day diet records were used as measures in this study, which minimises the possibility of misclassification bias. Fruits and vegetables were all included except potatoes. One methodological consideration in interpreting findings is that this study did not adjust for fat intakes. Baseline estimates showed saturated fat intake to be significantly lower (\approx 5%) in the upper compared with the lower quintiles of fruit and vegetable intake, but this small difference could not account for the entire observed association with CVD mortality. The representative nature of the sample and the excellent response rate (83%) make the results from this study highly generalisable to those with similar diets. Overall, this study is consistent with the other cohort study of mortality in providing evidence for an inverse association between fruit and vegetable consumption and death from CVD.

CHD Study 7: Genkinger and colleagues, 2004, combined data from two studies previously conducted on over 6000 adult residents in the U.S. state of Maryland [21]. They were 30-93 years at baseline in 1974 and did not exclude those with evidence of CVD or other diseases. Adults in the upper quintile of fruit and vegetable intake, consuming on average approximately 5 serves daily, had a significant 30% lower mortality from CVD compared with those in the lowest quintile consuming just under one serve daily (RR=0.71; 95% CI: 0.51-0.98 when adjusted for age and energy). Additional adjustment for other potential risk and intermediary factors attenuated this estimate only slightly (to $\approx 25\%$), but it lost its statistical significance. The reduced risk of death due to CVD was similar for both men and women, "ever" and "never" smokers, and across a range of body mass indices. A protective effect was also suggested (but not significant) when considering only intake of cruciferous vegetables. Those with the highest intakes (half a serve daily, on average) had a non-significant reduction in CVD mortality, 17%-11%, depending on the number of potential confounders included in the model. The small range of intakes for cruciferous vegetables undoubtedly limited the utility of these analyses. Although the results did not support a strict dose-response relationship within the narrow range of daily intakes, a rough extrapolation from these findings suggests that a 20-35% reduction in risk per serve would not be inconsistent with the results of this study, which would make this group of vegetables particularly cardioprotective.

While this study did not exclude participants with baseline histories of CVD, analysis showed results to be unaffected by baseline history of MI. Several potential dietary and lifestyle confounders were not considered, and these unmeasured factors may partially explain the findings of this study. The generalisability of the study's findings is uncertain, because the cohort was based on a non-random sample. Findings may have been biased towards the null as the food frequency assessment method did not have high validity for measurement of vitamin C and folate, suggesting that it may not have accurately captured intakes of fruits and vegetables. Nevertheless, the data support an inverse association between fruit and vegetable consumption and CVD mortality.

CHD Study 8: Tucker and colleagues, 2005, conducted a prospective study of 501 men aged 30-80 years at baseline and with no evidence of angina pectoris or MI (Baltimore Longitudinal Study of Ageing), also in the U.S. state of Maryland. After 18 years of follow-up, they observed a significant reduction in risk of CHD mortality of 21% for each daily serve of **fruits and vegetables** (RR=0.79; 95% CI: 0.69-0.92), when adjusted for a number of risk and intermediary factors. Further adjustment for additional dietary factors and secular trend further attenuated the risk reduction, and it became non-significant. **Fruit** consumption alone contributed minimally to the findings, revealing at most only a non-significant 14% reduced risk of CHD mortality. In contrast, each additional daily serve of **vegetables** was associated with a substantial and significant (27%) reduction in risk of death from CHD, after consideration of most possible confounding factors. Without adjustments, the risk reduction observed was larger (\approx 40%) (RR=0.60; 95% CI: 0.46-0.78).

Tucker and colleagues argue that statistical adjustment for saturated fat intake may understate the true contribution of fruits and vegetables to risk reduction for CHD mortality. They reported no significant interaction (p>0.10) between saturated fat and fruit and vegetable intakes, however they showed the effects of both were additive, and suggested that they probably reflect different mechanisms for reducing risk of CHD. Based on the most adjusted results, either a diet low in saturated fat (defined as <12%) with low fruit and vegetable intake (<5 serves/day), or a diet high in saturated fat (12+%) and high in fruit and vegetable intake (5+ serves/day), was associated with a 54-59% lower risk of CHD mortality. However, compared with consuming a diet low in vegetables and high in saturated fats, those consuming a diet low in saturated fat and high in fruits and vegetables experienced a 67% reduction in CHD mortality (RR=0.37; 95% CI: 0.16-0.81).

This study used a method that produces high-quality dietary measures (multiple food records), which would minimise misclassification. The study also employed an analytical strategy to ensure no temporal ambiguity, by excluding diet records within two years of a coronary outcome because diet may be affected by the disease process. Overall, this study was methodologically sound, and therefore the conclusions it presents are likely to be valid.

CHD Study 9: Liu and colleagues, 2001, also conducted analyses on data from the Physician's Health Survey, with involved 12-year follow-up of over 15,000 male physicians in the U.S. [16]. They found men with the highest quintile of **vegetable** intake (2.5 or more serves daily) had reductions in CHD risk and first MI of approximately 20% compared with men with the lowest intakes (<1 serve daily). The relationship was statistically significant for CHD incidence (RR=0.71; 95% CI: 0.57-0.89) but not for first MI (RR=0.79; 95% CI: 0.55-1.16). Interestingly, this study noted that the inverse association between CHD incidence and vegetable consumption among those who were overweight or obese (BMI \geq 25kg/m²) was similar to that observed for the whole sample, but a stronger, statistically significant 60% reduction was observed among smokers (RR=0.41; 95% CI: 0.18-0.97). Some residual confounding is possible, as this study did not adjust for intakes of energy or fatty acids. If anything, this study is likely to have underestimated the inverse association with vegetable intake, as the measurement tool did not demonstrate high validity, leading to possible misclassification of dietary exposures. The fact that complete dietary data were only

available for 69% of the cohort also introduces the possibility of some selection bias, which introduces further concern about the validity and generalisability of the results.

Observational Studies: Case-control Studies

Overview

Four case-control studies were located [24-28]. These measured the risk of CHD associated with fruits, vegetables, or combined fruits and vegetables. Five out of six associations tested showed an inverse relationship with CHD, and all were statistically significant. One study reported a significant, positive association between fruit intake and CHD (see Table 1).

Like cohort studies, case-control studies are observational and hence statistical adjustment for potential confounding is a necessary part of the analytic process. They also have some additional limitations, chiefly being subject to recall bias, since the onset of heart disease may result in cases differently recalling their intake of fruits and vegetables than controls. This bias would overestimate a putative protective effect of fruits and vegetables if cases recalled and reported lower than actual intake of fruits and vegetables than controls did, or it would underestimate the protective effect if cases tended to over-report their consumption compared to controls. Also, where studies have looked at intake immediately prior to CHD onset, there can be a reduced intake of all foods including fruits and vegetables, which would lead to an over-estimation of the inverse relationship between fruit and vegetable consumption and CHD.

Fruits and Vegetables

CHD Study 10: Yusuf and colleagues, 2004, reported results form a multi-centre casecontrol study conducted in 52 countries across Western, Eastern and Southern Europe, the Middle East, Africa, Asia, Australia & New Zealand, North, Central and South America [26]. Analyses included 15,152 cases ascertained from coronary care units in hospitals and 14,820 age- and sex-matched controls from either the same hospitals or the surrounding communities. Analyses addressed combined fruit and vegetable intake and revealed a significant, 30% reduction in CHD risk with daily consumption (OR=0.70; 95% CI: 0.64-0.77), compared with less frequent consumption. Findings were consistent across the regions studied and for those younger (<55 years for men or <65 years for women) and older (56+ years for men or 66+ years for women). The report gave few details regarding the method for assessing fruit and vegetable intake, and the actual amount of intake that was associated with a risk reduction is unknown. However, the stability of this finding across regions implies that the risk reduction applies to levels and types of fruit and vegetable intake that are achievable in many populations. Further, any error in quantifying fruit and vegetable intake by the measurement instrument is likely to reduce the chance of finding a significant protective effect of fruits and vegetables, and therefore should not discount the findings of this study.

CHD Study 11: Martínez-Gonazález and colleagues, 2002, conducted a hospital-based, case-control study in three hospitals located in Pamplona, Spain [24, 25]. Cases were 171 patients diagnosed with non-fatal acute MI and controls were 171 sex- and age-matched patients from the same hospital. In one set of fully-adjusted analyses [24, 25], they found a

significant 80% reduction in CHD risk (around 80%) for the top quintile (consuming an average of 750g/day) relative to the bottom quintile (consuming an average of 100g/day) of **fruit** (OR=0.20; 95% CI: 0.05-0.78). Importantly, a significant, inverse association was observed for all quintiles above baseline, giving an aggregate, statistically significant 75% reduction in risk of acute, non-fatal MI (OR=0.25; 95% CI: 0.08-0.74) for those consuming a median of 300g of fruit per day or more. Similar results were obtained in another set of analyses [24], showing a statistically significant 65% reduction in MI risk among those consuming at least 175g/day of fruit (OR= 0.35; 95% CI 0.14-0.89); however further adjustment for a list of other foods and food groups, which were highly correlated with fruit intake, attenuated the results substantially. This study used a measure of fruit and vegetable intake that included only fresh fruits, so findings cannot be generalised to other, processed fruits. Furthermore, a median daily intake of 300g in the middle quintile of this population is large, compared with typical intakes in Australia and New Zealand.

The results for vegetables in the Spanish case-control study provided more limited evidence for an inverse association with risk of non-fatal MI [24, 25]. In one analysis, the odds of MI were reduced by a non-significant 20% comparing the top quintile (median 950g/day) with the bottom quintile (median 278g/day) of vegetable intake (OR=0.80; 95%CI: 0.20-3.13, when fully adjusted) [24]. In the same paper, results differed only slightly across quintiles 2-5, but even the aggregated risk reduction for quintiles 3-5 failed to reach statistical significance. In the other report [25], odds of non-fatal MI were reduced by 55% when comparing quintiles 2-5 of daily vegetable consumption (347g/day or more) to the lowest quintile (OR=0.45; 95% CI: 0.21-0.98); however results were attenuated and became nonsignificant when further adjusted for other dietary characteristics. There is little explanation for the differences in results observed between the two sets of analyses published from this study, although adjustment for different sets of covariates remains one possibility. As with fruit intake, it should be noted that those in the lowest quintile were consuming an average of nearly 300g of vegetables daily, which is similar to the upper quintiles of intake in other studies and approaches recommended daily intakes for Australians. It is possible that the quantities of vegetables consumed in this population were too high to observe the putative protective effect on risk of CHD.

CHD Study 12: Rastogi and colleagues, 2004, conducted a hospital-based, case-control study in the urban areas of Delhi and Bangalore, India [27]. They included 350 cases diagnosed with acute MI and 700 non-cardiac patients as controls matched on age, sex, and hospital. An intake of more than 3 serves of **fruit** per day compared with one or fewer was associated with a 1.5-2.5 increased risk of acute MI; the positive association increased in magnitude and statistical significance with adjustment for additional covariates (OR=2.46; 95% CI: 1.15-5.25 from most adjusted model). One to three serves of fruit per day were positively associated with 45-30% increased odds of MI, but were not statistically significant. In contrast, a strong, statistically significant inverse association was demonstrated for **vegetable** intake. Consuming three or more compared with one or fewer serves of vegetables per day was associated with a 70% reduction in MI risk (OR=0.33; 95% CI: 0.13-0.82 from most adjusted model). A similar result was observed when green leafy vegetables were analysed separately (OR=0.34; 95% CI: 0.17-0.69 for >3 compared to <1 serve per day).

Due to the lack of an adequate dietary database for Indian foods, only limited adjustment for dietary covariates was possible, which did not include adjustment for total intakes of nutrients and energy. Use of mustard oil was the only fat variable associated with CHD in this study, and cereal intake was the major source of energy in this population. The magnitude of odds ratios in both sets of analyses suggests that these findings cannot be entirely explained by residual confounding, but the positive association indicating increased risk of MI with high fruit consumption is anomalous. The composition of diet also included many fruits and vegetables typical to India but not necessarily elsewhere. Hence the results of this study may not be generalisable to Australia and New Zealand, which both have population tendencies to over-nutrition.

CHD Study 13: Tavani and colleagues, 2004, combined data from three, hospital-based, case-control studies conducted in Northern Italy between 1983 and 1999 [28]. Analyses included a total of 1,713 cases comprised of patients diagnosed with non-fatal acute MI and 2317 controls comprised of patients with diagnoses unrelated to smoking or other MI risk factors and roughly matched on age, sex, and hospital. Only the association with vegetable intake was addressed. Among all participants, low consumption of vegetables (defined as <7.5 'portions' per week) was significantly associated with an increased risk of CHD (OR=1.26; 95% CI: 1.08-1.46); this is equivalent to a 20% reduced risk of MI with higher intakes of vegetables. Similar results (representing reductions of 22-26%) were observed among those reporting a family history of CHD (OR=1.35; 95% CI: 1.01-1.80) and those not (OR=1.29; 95% CI: 1.07-1.55). It is unclear whether the 'portions' used reflect a standardised, quantitative measure or are determined by respondents. Limited detail was provided on the measurement of vegetable intake, which leaves the possibility of misclassification of exposure and an underestimation of the protective effect of vegetable intake. Most potential confounders were considered by adjustment; however energy intake, total fat intake and intake of fatty acids were not. These factors cannot be ruled out as contributing to the findings of this study.

Meta-analysis

A meta-analysis [29] pooled results of seven studies of vegetable intake and CHD and eight studies of fruit intake and CHD, which were conducted between 1984 and 1999 in Europe and the US. Both incidence and mortality outcomes were included, as were all kinds of study designs (clinical trial, cohort, case-control, and cross-sectional), although the majority were prospective cohort studies. None of the results previously described in this section were included in this report due to the non-overlapping nature of the publication dates; however, earlier results from some of the studies likely contributed to the meta-analysis findings. The pooled results showed significant 20% and 15% reductions in risk of CHD, respectively, for those consuming the highest levels of vegetables (OR=0.77; 95% CI: 0.70-0.86) and fruits (OR=0.86; 95% CI: 0.77-0.96). Importantly the magnitude of these pooled relative risks were virtually unchanged whether they were adjusted for 'primary factors' (age, energy, smoking and 'dietary factors') or 'secondary factors' (use of supplements, family history, presence of many traditional coronary risks, physical activity, menopausal status, education, or use of aspirin). As the quantities consumed by the upper and lower quintiles are not presented in this analysis, the magnitude of the pooled relative risk can only be said to pertain to high compared with low intakes of fruits and vegetables in diets typical to Europe and the US.

Summary of the Evidence for an Association with CHD

The majority of the evidence supports an inverse association between fruit and/or vegetable consumption and CHD. The magnitude of the putative protective effect has not been quantified in this review, nevertheless, the overall consistency of results, irrespective of specific outcome studied, absolute quantities of fruits or vegetables consumed, or location of the research is noteworthy. The nature of the relationship does not appear to follow a strict dose-response pattern, but generally does show additional risk reduction with increases in fruit and vegetable intake. All of the studies addressing incidence or mortality from CHD were observational. These studies were generally high quality, although sometimes studies did not adjust for potential confounding factors (such as energy intake or physical activity) or adjusted for factors that may be intermediaries on a causal pathway between intake of fruits and vegetables and risk of CHD. For example, fruits and vegetables are generally low in energy, sodium, saturated fat and total fats. Therefore part of a protective mechanism of a high intake of fruits and vegetables may include reduction in obesity, BP and serum lipids as a result of replacing "less healthy" alternative foods in the diet. Consequently, adjustments for serum cholesterol, BP, and body mass index may be 'over-adjustments' removing part of the beneficial effect of fruit and vegetable consumption along with other confounding influences. Generally the biases in the studies were more likely to under-estimate than to over-estimate the inverse relationships between intake of fruits and vegetables and CHD. The only evidence of possible 'harm' was an observed positive relationship between fruit intake and CHD in a study from India, which may stem from differences in factors surrounding a high intake of fruits in this population. While none of the observational data could establish manipulation of the independent variable and reversibility (and therefore causality), the cohort studies were able to establish temporal sequence between intake of fruits and vegetables and outcomes related to CHD.

Study	#	Location	Design	Size	Duration	Incidence/ Mortality	Fruits & Vegetables	Fruit Only	Vegetables Only	Subgroup Analysis
WHS	1	US	cohort	39,876 women 84,251 women	5 years		inv +	inv *	inv, ns	inv *
NHS & HPS	2	US	cohort	42,158 men	8 years	I	inv *	inv*	inv *	inv*
NHANES/						I	inv +	N/A	N/A	
NHEFS	3	US	cohort	9,608 adults	16.6 years	М	inv *	N/A	N/A	
HFS	4	UK	cohort	10,741 adults	18-24 years	М	N/A	inv*	N/A	inv*
ARIC	5	US	cohort	11,940 adults	11 years	М	inv *	N/A	N/A	inv*
KIHD	6	Finland	cohort	2641 men	12.8 years	I	inv *	N/A	N/A	
Odyssey	7	US	cohort	6,151 adults	13 years	М	inv *	N/A	N/A	inv, ns
BLŚA	8	US	cohort	501 men	18 years	М	inv *	inv, ns	inv *	inv *
PHS	9	US 52	cohort	15,220 men 15,152 cases	12 years	I	N/A	N/A	inv *	inv *
INTERHEART Pamplona	10	countries	case-control	14,820 controls 171 cases	N/A	a	inv *	N/A	N/A	inv*
Hospital Study India Multi-	11	Spain	case-control	171 controls 350 cases	N/A	la	N/A	inv *	inv +	n/a
centre Study	12	India	case-control	700 controls	N/A	a	N/A	pos *	inv *	
Three Italian Case-Control				(women) 1,713 cases				·		
Studies	13	Italy	case-control	2,317 controls	N/A	a	N/A	N/A	inv *	inv *
TOTAL –						5 incidence	8/8 inv	4/4 inv	4/4 inverse	7/7 inverse
cohort studies						4 mortality	8/8 significant	3/4 significant	3/4 significant	6/7 significant
TOTAL –						4 incidence	1/1 inv	1/2 inv	3/3 inverse	2/2 inverse
case-control						0 mortality	1/1 significant	2/2 significant	3/3 significant	2/2 significant
TOTAL –						9 incidence	9/9 inv	5/6 inv	7/7 inverse	8/8 inverse
all studies						4 mortality	9/9 significant	5/6 significant	6/7 significant	7/8 significant

Table 1: Summary of findings related to association between consumption of fruits and vegetables and oucomes related to coronary heart disease

WHS=Women's Health Study; NHS=Nurses' Health Study; HPS= Health Professionals' Study; HFS=Health Food Shoppers Study; ARIC=Atherosclerosis Risk in Communities Study; KIHD=Kuopio Ischemic Heart Disease Study; BLSA=Baltimore Longitudinal Study of Ageing; PHS=Physician's Health Study I=Incidence; M=Mortality

+ = statistically significant in some strata but not highest; *= statistically significant in highest stratum or per serve; ns= not statistically significant; N/A= not assessed

^a these case-control studies included incident cases of non-fatal MI only; deceased cases were not included

Mechanisms of Action

There is considerable overlap between the current models of CHD aetiology and the biological activity of compounds in fruits and vegetables, which would support a role for a diet high in fruits and vegetables in reducing the risk of CHD. Fruits and vegetables contain many compounds that are thought to be beneficial in preventing CHD and other degenerative diseases, through multiple mechanisms. Fruits and vegetables contain dietary fibre, antioxidant vitamins (vitamins C and E, beta carotene, selenium) and antioxidant phytonutrients, such as flavonoids, carotenoids, and polyphenols. In addition to cardiac benefit from ingesting beneficial substances, benefits of fruit and vegetable consumption may also stem from concurrent displacement from the diet of substances that may contribute to CHD, as fruits and vegetables do not contain large amounts of fats (particularly saturated fat), energy, cholesterol or sodium.

Aetiology of CHD

The main cause of CHD is atherosclerosis [30]. Activation of the atherosclerotic plaque and formation of a thrombus which occludes blood flow to the myocardium of the heart comprise the chief cause of heart attack (or MI) [31]. Prevention of the underlying atherosclerosis and plaque instability are therefore at the core of current efforts to prevent CHD. The mechanisms of plaque formation and rupture are still under research. The most widely accepted theory is the "response to injury" theory, which postulates that injury to the endothelium lining the arteries causes vascular inflammation, and a fibroproliferative response. Many factors are likely to injure the epithelium including oxidized LDL-cholesterol (referred to as LDL for brevity), some infectious agents, toxins (including those from cigarette smoking), hyperglycemia, and hyperhomocystinemia. Monocytes enter the blood vessel wall, take up LDL and form the foam cells seen in early atherosclerosis, which produce factors that injure the endothelium. Most people have a "fatty streak" by age 20 years which is an accumulation of serum lipoproteins, foam cells, T-lymphocytes and smooth muscle cells. Smooth muscle cells form a protective fibrous cap over the contents of the fatty streak, but this cap can be 'denuded' exposing the underlying contents to the circulating blood. The progression of atherosclerotic lesions to a MI usually involves these unstable plaques eroding or rupturing, and platelets adhering to the site, becoming activated, aggregating, and forming a thrombus [32].

Altered cholesterol metabolism

In addition to fruits providing a replacement in the diet for fattier, higher cholesterol foods, intake of dietary fibres from fruits and vegetables has been shown to lower cholesterol in humans [33]. Both total cholesterol and LDL may be reduced by dietary fibre [34]. Experimental studies show that high levels of insulin may promote dyslipidemia [35], and fibre decreases the glycemic and insulinemic response to foods by delaying carbohydrate absorption after meals [36, 37].

Lowering of blood lipids is important in preventing CHD. Choy et al. [38] make the claim

"Results from both clinical and animal studies show that a high level of LDL in the blood may be the single most important risk factor in the production of atherosclerosis." (p214) High serum lipid levels, especially high levels of LDL, relate strongly to the development of atherosclerosis [38]. Evidence that LDL in atherosclerotic plaques has a causal role, or is clinically significant, is provided by randomised clinical trials that show lowering lipids reduces coronary events [39].

Reduced oxidative modification of LDL

Antioxidants include manganese, selenium, zinc, vitamin C, vitamin E, beta-carotene and phytonutrients (lutein, lycopene, b-cryptoxanthin, flavonoids, isoflavones), most of which are contained in fruits and vegetables [33]. Antioxidants have been hypothesised to prevent CHD by reducing the oxidation of LDL [40]. Antioxidant intake has been shown to inhibit oxidation of LDL in animals (in vivo) and humans (ex vivo), but the reduced ex-vivo oxidation of LDL associated with antioxidants may have limited biological relevance [40]. The effect of antioxidants on LDL oxidation within the atherosclerotic plaque is somewhat unpredictable, as various oxidative processes occurring within the plaque are likely to be affected by different antioxidants [41]. Which antioxidants or combination of antioxidants, if any, can reduce the oxidation of LDL in the formation and progression of CHD is not definitively established and still under research.

An ability to prevent the oxidative modification of LDL may be relevant to preventing CHD, as the oxidative modification of LDL plays a substantial role in CHD development. In the formation of foam cells, LDL is modified before uptake by macrophages [38] in large amounts, since this process is not regulated by negative feedback mechanisms [42, 43]. LDL can be modified by various processes including oxidation [44]. Oxidatively-modified LDL is involved in other aspects of CHD development as it affects the regulation of vascular tone, activation of inflammatory responses and platelet aggregation [38]. However, there is question as to whether the oxidation of lipids and proteins in CHD is causal, as opposed to being a consequence of the disease process [41]

Effect on platelet activation and aggregation

Through a reduction in the insulineamic response, dietary fibre from fruits and vegetables may reduce the formation of atherosclerotic lesions, as high levels of insulin have also been shown to promote abnormalities in blood-clotting factors and atherothrombosis [35]. Substances in fruits and vegetables other than fibre have also shown a capacity to reduce the aggregation of platelets. Pharmacologic studies have shown garlic to inhibit the adhesion and aggregation of platelets [45] and these findings are also substantiated in research on humans [46, 47]. Garlic is believed to inhibit platelet aggregation by suppression of thromboxane B2 synthesis and alteration of platelet lipoxygenase and cyclooxygenase activities, and flavonoids present in some fruits and vegetables have also demonstrated a capacity to act in a similar manner [48].

Reduction in abnormal blood platelet aggregation may be important in preventing CHD. Platelet activation and aggregation play key roles in the process of arterial thrombosis [49], although the mechanisms by which these occur are not fully known. Patients with MI often have platelet 'hyperaggregability' [49] and prospective studies find risk of recurrent MI is increased by platelet hyperaggregability [50]. Further, the role of platelet aggregation appears causally important in the development of CHD, as inhibiting platelet aggregation successfully prevents arterial thrombotic events

including MI. For example, aspirin suppresses platelet aggregation (by blocking platelet thromboxane A2 synthesis) and prevents both CHD and stroke [51].

Reduced BP

Studies have shown intake of fruits and vegetables also reduce arterial BP [52, 53]. There is biological plausibility for this relationship, although there is no certainty as to which factors are most important, or whether all factors have been identified. Dietary factors have been shown to contribute to modulating endothelial dysfunction and subsequent elevated BP. Some of these factors are present in fruits and vegetables, including vitamins C and E, folic acid, coenzyme Q-10 (also found in meat and fish), which have been shown to have a beneficial effect on endothelial function and possibly in preventing CVD [54, 55]. Dietary fibre, magnesium, the high potassium/low sodium content of fruits and vegetables also appear to be important [56].

In a review, Houston [56] claims that antioxidant deficiency and excess free radical production have been linked to hypertension in numerous epidemiological, observational, and intervention studies. He further claims that the initiation, maintenance, pathogenesis, pathophysiology, and cardiovascular complications of hypertension may result from oxidative stress with an imbalance between reactive oxygen species and the antioxidant defense mechanisms [56]. People with hypertension have an impaired antioxidant defense mechanism, more oxidative stress with more reactive oxygen species produced and a greater-than-normal response to oxidative stress [56]. Thus antioxidants present in fruits and vegetables may be useful in preventing and treating hypertension and therefore reducing risk of CHD. Empirical support that antioxidant vitamins, particularly vitamin C, are potentially important components of fruits and vegetables for lowering BP can be found in studies that show hypotensive effects among people with hypertension [57], vitamin C supplements lowering BP [58] and improved vasodilation of coronary arteries in people with hypertension [59].

The high-potassium, low-sodium content of fruits and vegetables may be part of the mechanism by which fruits and vegetables lower BP. In both epidemiological and clinical trials, an increased sodium intake is associated with higher BP [60]. Reversibility is evident as restriction of sodium intake leads to a reduction in BP in people with hypertension, especially those who are 'salt sensitive' [61-64]. Increased dietary intake of potassium (abundant in fruits and vegetables) also has been shown to reduce BP in epidemiological studies and clinical trials [65, 66]. The magnesium content of fruits and vegetables may also provide a mechanism for lowering BP, as in many (but not all) studies, increased dietary magnesium intake is associated with a decrease in BP [56].

The evidence around fibre intake and reduced BP is not consistent (Houston, 2005). However, researchers have proposed many biological mechanisms by which dietary fibre might reduce BP: by improving insulin sensitivity, reducing endothelial dysfunction, reducing intravascular volume by increasing the excretion of sodium in the urine, decreasing sympathetic nervous system activity, reducing oxidised LDL, and by reducing the hypertriglyceridemia, hyperglycemia, endothelial dysfunction, and vasoconstriction that occurs after consuming high-fat meals [67-70]. The reduction in BP associated with fruit and vegetable intake may have a substantial capacity in preventing CHD. Trials show reduction in BP reduces strokes, heart failure and CHD, irrespective of the methods used to lower BP [71]. A target BP under 140/90 mmHg is considered appropriate for primary and secondary prevention in the general population, with a lower target for people with diabetes or renal parenchymal disease [72].

Homocysteine

Intake of fruits and vegetables, folate-rich vegetables, and folate have been associated with reduced circulating levels of homocysteine [73]. Manipulation of diet in interventions with healthy volunteers has shown that homocysteine can be reduced by supplemental folate intake [74] and intake of folate-rich fruits and vegetables [75].

The mechanisms by which reducing elevated levels of homocysteine may be important in preventing CHD are under investigation. There is some support to the possibilities that elevated homocysteine disrupts endothelial function [76, 77], proliferates smooth muscle cells [78, 79], increases cholesterol synthesis in the liver [80, 81] and is involved in LDL oxidation and thrombus formation [73]. In a review of folate and CAD prevention, Musiket [82] cautions that it is neither proven nor disproved whether mild elevation in homocysteine is a modifiable risk factor or a result of CAD, awaiting further intervention trials for confirmation. The author concludes the role of folate in primary and secondary prevention of coronary artery disease is insufficiently known to warrant supplementation or fortification but recommends dietary intake to recommended levels has relevance to coronary artery disease prevention.

Summary on mechanisms

In summary, there is no consensus as to whether all the beneficial substances contained in fruits and vegetables have been identified, nor whether the multiple roles of each of the known bioactive substances in fruits and vegetables have been identified. However the existing evidence does provide biological plausibility to the epidemiological findings of a preventive role for consumption of fruits and vegetables in the development of CHD through one or more of the above mechanisms.

Part 3: Relevance of the findings to Australia and New Zealand

Coronary Heart Disease

Prevention of CHD is relevant to the Australian and New Zealand populations, for whom it is the most common cause of death [83]. Australia and Zealand are not atypical of the countries in which the reviewed studies were conducted. In New Zealand, mortality rates for CHD are slightly higher than in Australia, and similar to rates in the United States (see Figure 1.) The reviewed studies were mostly conducted in the United States and Europe, in countries with both higher and lower mortality rates due to CHD than in Australia.

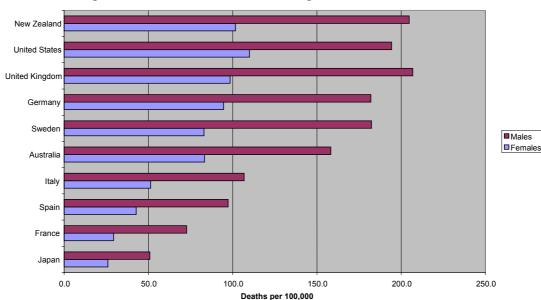


Figure 1: Death rates for CHD among OECD countries, 1999

Source: Australian Institute of Health and Welfare, 2005. Chronic Diseases and Associated Risk Factors - International Comparisons. [online] <u>http://www.aihw.gov.au/cdarf/data_pages/oecd/index.cfm</u> (10/11/2005)

Consumption of Fruits and Vegetables

Types

The results of the studies apply to types of fruits and vegetables usually available and common in Australia and New Zealand, however they do not necessarily include all of the fruit and vegetable products currently sold in Australia and New Zealand. The main dietary assessment methods in the studies were food frequency questionnaires, 24-hour recall, diet history and weighed records. The few studies that used diet history, recall and weighed record methods would most likely have included any fruit or vegetable (other than those explicitly excluded), whether purchased fresh, frozen or canned and whether consumed raw or cooked, alone or in mixed dishes. These methods collect data about meals consumed and translate this information into estimates of food and nutrient intake, usually disaggregating mixed foods into their constituents. The food frequency questionnaires that were more often used generally

did not specify whether responses were to include fruits and vegetables that were frozen or canned as well as fresh fruits and vegetables, but generally excluded mixed dishes. Additionally, the intervention studies (discussed in Part 4) generally provided participants with minimally processed fruits and vegetables to achieve improvements in biomarkers of CHD. Both studies of CHD risk and biomarkers usually stated or implied whole fruits and vegetables rather than juices of fruits and vegetables. Notable exceptions include Jopshipura et al. [17] who had null findings for citrus juice, and the DASH study interventions which included both fruit and fruit juices in their intervention and had favourable findings. Potatoes, including those consumed as french fries, were often excluded from measures of vegetable intake, and the studies that examined the relationship between potato intake and the risk of CHD reported null findings [17, 27].

Types of vegetables commonly consumed in Australia (Table 2) and New Zealand (Table 4) were typically included in the reviewed studies, except potato which tended to be excluded by studies but is commonly consumed in both countries. The types of fruits typically included in studies were also commonly consumed by Australians and New Zealanders (Tables 3 and 5, respectively); however most of the studies excluded fruit juices, which also are commonly consumed in the region.

	Men	Women	Inclusion in reviewed studies
Potatoes, eg. cooked potato, hot potato chips, mashed potato, potato			
salad	37%	29%	often excluded
Tomato	14%	15%	tomatoes, tomato juice
Other fruiting vegetables, eg. pumpkin, zucchini, avocado,			
cucumber, eggplant	10%	13%	eggplant
Other, eg. corn, mushrooms, garlic,			coleslaw, corn, celery, mushroom,
onion, mixed vegetables, coleslaw	10%	10%	mixed vegetables
Leaf and stalk vegetables, eg. lettuce, spinach, bean sprouts	7%	9%	green leafy vegetables', 'other greens', 'dark green lettuce salad', 'green salad', mustard greens, turnip greens, collards, spinach
Peas and beans, eg. green beans, peas, snow peas	7%	7%	beans (including baked beans), pintos, kidney lima or in chilli, green beans, peas, lentils
Brassicae, eg. cabbage, cauliflower broccoli	7%	9%	broccoli, cauliflower, 'cruciferous vegetables', cabbage, sauerkraut
Carrot and root vegetables, eg. carrot, beetroot, parsnip, radish,			'dark-yellow vegetables', sweet potatoes, yam, carrots, mixed veg. with
sweet potato	8%	8%	carrots, beet

 Table 2: Types of vegetables consumed by Australian adults (NNS 1995)

Source: A NSW Centre for Public Health Nutrition, 2003. Report on the consumption of vegetables and fruit in NSW 2003, State of Food and Nutrition in NSW Series NS NSW Department of Health. [online] http://203.5.110.172/pubs/r/pdf/report_vegies_fruit.pdf (10/11/2005)

	Men	Women	Inclusion in reviewed studies	
Pome , eg. fresh pears, apples, canned apples	28%	29%	apples, applesauce, pears	
Tropical, eg. banana pineapple, mango, pawpaw	21%	21%	banana	
Other, eg. melons, grapes, dates, passionfruit	19%	19%	cantaloupe, fruit cocktail	
Stone, eg. apricot, cherry, peach, plum	13%	14%	peach	
Citrus, eg. orange, canned grapefruit, lemon peel	16%	13%	orange, grapefruit	
Dried, eg. sultanas, banana chip, dried peach	2%	2%	raisin, prune	
Berry, eg. blackberry, blueberry, strawberry	1%	2%	strawberry, blueberry	

Table 3: Types of fruits consumed by Australian adults (NNS 1995)

Source: A NSW Centre for Public Health Nutrition, 2003. Report on the consumption of vegetables and fruit in NSW 2003, State of Food and Nutrition in NSW Series NS NSW Department of Health. [online] http://203.5.110.172/pubs/r/pdf/report_vegies_fruit.pdf (10/11/2005)

Table 4: Vegetables consumed by New Zealanders aged 15+ years (NNS 1997) Proportion with at least weekly consumption Inclusion in reviewed studies

Proportion with at least weekly const	Inclusion in reviewed studies		
Potato, carrot, tomatoes, lettuce, onions/ leeks, peas, cabbage/ coleslaw	Most (60-100%)	Often excluded potato, sometimes excluded peas. Often included, eg 'dark green lettuce salad', 'green salad', carrot, dark-yellow vegetables, cabbage/ coleslaw Frozen vegetables sometimes excluded baked beans and lentils sometimes	
Cauliflower, broccoli, pumpkin,		excluded	
hot chips, frozen mixed vegetables, green beans, cucumber, beans (inc. baked beans and lentils), sweetcorn, mushrooms, courgettes (zucchini, marrow, eggplant,		Sometimes included mixed veg. with carrots, beans beans (including baked beans), pintos, kidney lima or in chilli, green beans, peas, lentils, sweet potatoes (kumara), broccoli,	
squash), kumara, capsicum	Many (30-60%)	cauliflower, 'cruciferous vegetables'	
Beetroot, celery, brussel sprouts, avocado, asparagus, sprouts, parsmip	Some (15-30%)	Did not exclude, though did not always mention Sometimes included beet	
		Often did not mention some vegetables specifically (but did not exclude), sometimes excluded soybeans/ tofu	
Other green leafy vegetables,		Often included 'green leafy vegetables',	
turnips/ swedes, green bananas, yams, watercress, kamo kamo,		'other greens', 'dark green lettuce salad', 'green salad', mustard greens, turnip	
taro, puha, soybeans/tofu, taro leaf,		greens, collards, spinach.	
karengo, Pacific Island yams,		Breens, contras, spinten.	
cassava, bread fruit	Few (0-15%)	Sometimes included yam	

Source: 1997 NNS - Russell DG, Parnell WR, Wilson NC et al. 1999. NZ Food: NZ People. Key results of the 1997 National Nutrition Survey. Ministry of Health: Wellington. pp148-154 <u>http://www.moh.govt.nz/moh.nsf/pages/MH852</u>

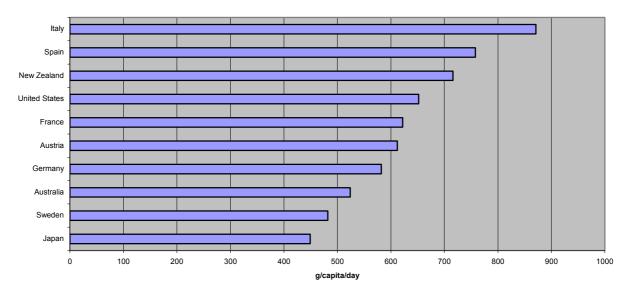

Proportion with at least weekly consu	Inclusion in reviewed studies	
Bananas, apples, oranges	Most (60-100%)	None specifically excluded Sometimes specified apples, applesauce, banana, orange/ citrus
Stone fruit (peach, nectarine, plum, apricot), pears, berry fruits (strawberry, other berries, cherries), kiwifruit, grapes	Many (30-60%)	None specifically excluded Sometimes specified peach, pears, strawberry, blueberry,
Sultanas, feijoas, melon, canned fruit in syrup, other dried fruit, stewed fruit	Some (15-30%)	Sometimes included only fresh fruit Sometimes specified raisin, prune, cantaloupe.
None listed in NNS	Few (0-15%)	

Table 5: Fruits consumed by New Zealanders aged 15+ years (NNS 1997)

Source: 1997 NNS - Russell DG, Parnell WR, Wilson NC et al. 1999. NZ Food: NZ People. Key results of the 1997 National Nutrition Survey. Ministry of Health: Wellington. pp148-154 <u>http://www.moh.govt.nz/moh.nsf/pages/MH852</u>

Quantities Consumed

Figure 2 compares consumption of fruits and vegetables across OECD countries. New Zealand intakes are high and Australian intakes are more moderate to low relative to many countries. Importantly, reviewed studies that showed a reduction in CHD were conducted in populations with both higher and lower intakes than Australia and New Zealand. In both Australia and New Zealand, average fruit and vegetable intakes are below the dietary recommendations of each country. According to the last national nutrition surveys, two-thirds of New Zealanders met recommended daily intakes (three serves) of vegetables and fewer than half consumed the recommended quantity of fruits (two serves daily) [84]. Australians consumed on average 144g of fruit and 259g of vegetable products and dishes per day [85], which means that intake falls well short of recommended levels for a substantial proportion of the population. The findings of the case-control study conducted in Spain [25], in a population with very high intakes of both fruits and vegetables, showed that the reductions in CHD risk were similar for quintiles consuming on average 300g of fruits, and 550g of vegetables, in comparison with quintiles at higher intakes. At the other end of the spectrum, a study conducted in the US [17] in a population with lower consumption of fruits and vegetables found each daily serve to significantly reduce the risk of CHD. The evidence would suggest that findings from the studies in this review have relevance to Australia and New Zealand: for a substantial proportion of the Australian and New Zealand populations, an increase in dietary intake of fruits and vegetables could decrease the risk of CHD.

Figure 2: Fruit and vegetable intake among OECD countries, 2001 gram/capita/day

Source: Australian Institute of Health and Welfare, 2005. Chronic Diseases and Associated Risk Factors - International Comparisons. [online] <u>http://www.aihw.gov.au/cdarf/data_pages/oecd/index.cfm</u> (10/11/2005)

Lifestyle behaviours

The direction of findings was consistent across most studies, which were conducted in many different nations, with different food cultures and lifestyles. The INTERHEART study [26] showed no evidence for a difference in associations across regions and studied 52 countries across all major continents. Despite countries having different constellations of coronary risk factors, different ways of consuming fruits and vegetables, and likely differences in the nutritional quality of fruits and vegetables, a reduction in risk of CHD was consistently visible. This provides further evidence that the findings suggesting protection against CHD would be relevant to Australian and New Zealand consumers of fruits and vegetables.

Part 4: Relationship of dietary fruit and vegetable intake with relevant biomarkers of disease outcome

In discussing the biological plausibility of the associations between fruit and vegetable consumption and CHD, the potential mechanisms underlying disease development were described (see last section of Part 2). Intermediaries along the potential mechanistic pathways represent alternative outcomes of potential interest, referred to as CHD biomarkers. These include lipid levels (i.e., total cholesterol, LDL, HDL, cholesterol ratios, triglycerides), blood pressure (BP), homocysteine, Creactive protein, among others. In this Part, we now describe findings from crosssectional studies that addressed whether a relationship exists between fruit and/or vegetable intake and biomarkers of CHD and experimental studies that addressed whether increased intake of fruits and vegetables favourably alters these CHD biomarkers. The final three Appendices present details on the studies that used various CHD biomarkers as outcomes: Appendix 5 presents intervention studies, whereas Appendix 6 presents longitudinal observational studies, and Appendix 7 presents cross-sectional studies. As in Part 2, studies are numbered (from 1 to 18) and are also labelled with an initial, according to which outcome is being discussed (p=lipids, b=blood pressure, h=homocysteine, and c=c-reactive protein), as many studies addressed more than one biomarker

CHD biomarkers as outcomes

Intervention Studies

Several intervention studies were conducted that assessed whether following a diet high in fruits and vegetables led to changes in biomarkers for CHD (blood lipids, BP and measures of plasma antioxidants). Since the CHD implications of plasma antioxidant capacity are least established in the literature [40, 41] these will not be discussed here. One study [86] is not considered in this review as it addressed postprandial rather than typical levels of CHD biomarkers.

Blood lipids

All of the fruit and vegetable interventions included were conducted on adults who were either healthy or had CVD co-morbidities, but none focused on groups with existing CHD and therefore are relevant to addressing the use of fruits and vegetables in a preventive capacity. Of the studies that compared blood lipids thought to increase the risk of CHD (total cholesterol, LDL, HDL:LDL, TC:HDL or triglycerides), three showed reductions in the intervention relative to control groups for at least one subgroup studied, and one of these comparisons reached statistical significance. None of the studies reported a statistically significant increase in these lipids. Unlike the other lipid parameters, an increase in HDL-cholesterol (referred to as HDL for brevity) is thought to reduce risk of CHD. Of the studies that measured HDL, none showed a significant difference in either direction between intervention and control groups.

Biomarker study 1p: In the DASH study, **Obarzanek et al. (2001)** [87] used a single-blinded, randomised, controlled trial (RCT) to establish whether following an

intervention diet of 5.2 serves of **fruit and fruit juices** and 3 serves of **vegetables** daily reduced BP more effectively than following an otherwise similar control diet of 1.6 serves of fruits and fruit juices and 2 serves of vegetables daily for American adults with high BP (not treated by medication). 459 adults participated in this study – 146 were allocated to the fruit and vegetable intervention, 145 to the control group and 145 to another intervention (not discussed in this review). The control diet was used for a three-week run-in period. For men, they found the intervention diet led to significantly greater reductions in total cholesterol (0.18 mmol/L), TC:HDL ratio (0.23) and LDL:HDL ratio (0.19) and non-significantly greater reductions in HDL (0.03 mmol/L), LDL (0.12 mmol/L), and triglycerides (0.1 mmol/L). Among women, they found no significant reductions in lipid parameters relative to the control group; small decreases in triglycerides (0.1 mmol/L) and TC:HDL (0.04 mmol/L) were noted while small increases (0.01 to 0.05 mmol/L) were noted for the other lipid parameters. Subgroup analyses in this study showed the effect may be stronger for those with lower baseline levels of hypertension.

Some methodological issues need to be considered in interpreting these findings. Firstly, the findings may not be entirely generalisable to primary prevention in an Australian/New Zealand context. While this study randomised allocation, it did not use random recruitment, did not report participation rates, purposefully over-sampled African Americans, and did not exclude participants with CVD or CHD in general, only those who had a recent cardiovascular event. Secondly, the intervention diet may have been inadequate to expect beneficial effects. The vegetable content was low (and only 50% greater than vegetable content in the control diet), and there is no description of how much of the fruit was fresh or in juice form, meaning that intake of whole fruits may have been much less than the 5 serves consumed in total. Thirdly, some confounding is possible. The intervention group had a higher proportion of smokers (\approx 7%) and a lower proportion of persons who consume alcohol (\approx 11%), although to what extent this would modify a change in blood lipids over eight weeks is not certain. The intervention diet also had extra grains and less sucrose than the control diet, however this is unlikely to have substantially impacted findings. Finally, one cautionary note in interpreting the lack of statistical significance of findings from the DASH study is that a separate and non-comparable DASH diet was the main intervention, and the effect of this DASH diet was the primary hypothesis around which power calculations were made, not the fruit and vegetable intervention diet.

Biomarker Study 2p: Broekmans et al. (2001) [88] used a RCT to determine whether Dutch adults with a habitually low intake of fruits and vegetables (<250g daily) would have greater reductions in blood lipids following a diet high in **vegetables and fruit** (500g/d plus 200mL/d juice) compared with following a diet low in fruit and vegetables (100g/d and 0mL/d juice) for four weeks. Relative to baseline, the 24 people who consumed the diet high in fruits and vegetables had significant reductions in TC and LDL (0.7 and 0.5 mmol/L), a smaller, significant reduction in HDL (0.2mmol/L), and non-significant reductions in triglycerides and LDL/HDL ratio (\approx 0.2mmol/L and 0.1). Relative to the 23 controls, they had non-significantly greater reductions in all lipids (\leq 0.2 mmol/L).

Successful randomisation ensured treatment groups were comparable in terms of most important factors and left minimal chance for confounding. However the chance of

confounding from dissimilar baseline diets is not known, as these were not reported and the study did not use a run-in period. Some misclassification of outcome could have slightly biased estimates towards the null, as LDL was calculated rather than measured. A major issue with the way the study was conducted could possibly explain why both intervention and control groups had large significant changes in lipid parameters from baseline and why negligible additional effects of the intervention diet were noted. The fibre content of the intervention diet (56.2 g/d) and the control diet (47.9g/d) were unrealistically high (although it is uncertain whether this was a typographical error in the publication). The study was also not statistically powered to detect the small differences observed between the intervention and control groups. Generally the findings of this study are of questionable use.

Biomarker study 3p: Freese et al. (2002) [89] conducted an unblinded RCT with 72 adult volunteers from a university setting, randomly allocating them to one of four groups: high in either oleic or linoleic acid and either high in fruits and vegetables (440g veg, 166g berries, 204g fruit) or low in fruits and vegetables (167g veg, 0g berries, 54g fruit). After the six-week intervention, change in total cholesterol, HDL and LDL were not significantly different across treatment groups. Among those consuming the high linoleic acid diet, the 15 participants who followed a diet high in fruits and vegetables had a 0.39mmol/L greater reduction in total cholesterol, a 0.07mmol/L greater reduction in HDL and a 0.32mmol/L greater reduction in LDL compared with the 13 participants following the diet low in fruits and vegetables. Of those consuming a diet high in oleic acid, the 14 participants who followed the diet high in fruits and vegetables had a 0.02mmol/L greater increase in total cholesterol, a 0.03mmol/L lesser reduction in HDL, and a relative increase in LDL of 0.33 mmol/L, compared with the 15 participants consuming the diet low in fruits and vegetables. While no differences were statistically significant, the findings hint that the effect of consumption of fruits and vegetables may interact with other dietary factors.

Generally, the study was well conducted. Plasma and urinary excretion markers indicated good compliance with the treatment diets. The control group following a self-selected diet also had decreases in total cholesterol and LDL over the six-week trial period, however these were not significant and were small by comparison with the differences found between treatment groups (0.05 and 0.06mmol/L, respectively). The absence of a substantial change in the controls indicates that random or period variation is minimal. Randomisation was largely successful as the even distribution of characteristics across treatment groups left minimal chance for confounding. One exception is that comparison groups varied slightly in their baseline diets, which may have affected their changes in serum lipid measures, particularly as there was no runin period. The unblinded nature of the study, which is seldom avoidable in dietary interventions, may have provided a small source of bias. Overall there was very wide within-group variation, which reduced the ability of this study to pick up significant effects with small group sizes. This study does not provide strong evidence that increasing fruit and vegetable intake improves lipid profile, however the small sample size and the aforementioned issues mean it also does not provide strong evidence that the intervention does not improve biomarkers for CHD.

Biomarker study 4p: An unblinded RCT by **John et al. (2002)** [53] randomised 690 healthy adults on GP lists who had no CVD or co-morbidities to either a behavioural intervention (n=344) aimed at increasing **fruit and vegetable** intake (without

suggesting any other changes) or a control intervention (n=346) consisting of the same measures and visits but no dietary intervention. After the six-month trial period, the intervention group had daily intake of fruits and vegetables approximately 100g higher than the control group and a slightly lesser reduction in total cholesterol than the control group (0.01mmol/L). The largely successful randomisation of participants and adjustments for baseline values and gender minimised the chance that an imbalance between intervention and control groups accounted for the findings. Generalisability of the study findings to the general population is assisted by the study's sampling design, but is not certain as participation rates were not reported in this paper. One serious weakness in this study is their measurement of non-fasting cholesterol as an outcome, which leaves a greater chance for misclassification bias (ie, the study may have slightly underestimated any effect of the intervention on cholesterol). Also the intensity of the intervention may have been insufficient to achieve a reduction in cholesterol, the study was small, and self-reported measures were used in this unblinded study. As a result of increased dietary awareness, participants in the intervention group may have over-reported their intake relative to controls. As such, the study provides minimal evidence either way as to whether increased fruit and vegetable intake improves lipid biomarkers for CHD.

Blood Pressure

All four fruit and vegetable interventions found a decrease in diastolic BP and three found decreases in systolic BP after the study period relative to a control intervention. In two of the studies, reductions in systolic and diastolic BPs reached statistical significance; no studies found a significant increase in BP. All of these interventions were conducted on adults who were either healthy or had CVD co-morbidities, but none focused on groups with existing CHD, and therefore results are relevant to address the use of fruits and vegetables in primary or secondary prevention.

Biomarker study 5b: As part of the DASH study, **Conlin et al. (2000)** [52] tested the effect of their **fruit and vegetable** intervention diet in relation to BP for a subgroup of 133 DASH participants with hypertension (not currently controlled by medication). After the eight-week trial period, the 49 participants allocated to the intervention group had significantly greater reduction in BP than the 47 participants allocated to the control group (7mmHg systolic and 3mmHg diastolic). The intervention group also had a lower risk (\approx 30%) of uncontrolled hypertension (systolic BP \geq 140mmHg and diastolic BP \geq 90mmHg) and uncontrolled isolated systolic hypertension (systolic BP \geq 140mmHg diastolic BP<90mmHg) compared with the control group after the intervention, although only the difference in hypertension risk reached statistical significance.

The same methodological considerations previously described for the DASH study apply in interpreting the findings of this study. Randomisation led to similar characteristics between the groups, however the slightly greater proportions of females and African Americans and lower baseline alcohol intake within the intervention group are unlikely to entirely account for findings. Findings support the claim that an increased fruit and vegetable intake can reduce blood pressure in people with hypertension.

Biomarker study 6b: Also as part of the DASH Study, **Moore et al. (2001)** [90] tested the effect of the intervention and control diets described above in 72 American

adults with isolated systolic hypertension. After the eight-week intervention, the 24 participants following the diet higher in **fruits and vegetables** had a non-significantly greater reduction in systolic BP (\approx 4mmHg) and diastolic BP (\approx 1mmHg) than the 25 participants in the control group. While the difference between intervention and control groups did not reach statistical significance, it is noteworthy that 50% of participants had normal BP after the intervention diet compared with 24% of participants following the control diet. This comparison was not statistically tested. Methodological issues described above for Biomarker study 1p apply also to this study and the one above (Biomarker study 5b).

Biomarker study 2b: In addition to testing blood lipids, the study by **Broekmans et al. (2001)** [88] tested the effect of a **fruit and vegetable** intervention diet on BP. They noted substantial and significant reductions from baseline in both systolic (≈ 6 mmHg) and diastolic (≈ 4 mmHg) BP in both the intervention and control groups. Differences in the change from baseline between the intervention and control groups did not reach statistical significance. In the intervention group, the reduction in systolic BP was actually nearly 3 mmHg less than for the controls, and the reduction in diastolic BP was only 0.1 mmHg greater. The same serious methodological issues described earlier, especially those relating to fibre, need to be considered in understanding the findings of this study.

Biomarker study 4b: In the RCT conducted by **John et al. (2002)** [53], BP changes accompanying an increase in **fruit and vegetable** intake were noted. This study found the reduction in BP from baseline was significantly greater in the intervention than control groups (\approx 4mmHg systolic and \approx 1.5 mmHg diastolic BPs). While fat intake was not monitored across the study period, both body weight and cholesterol remained unchanged, which suggests that a concomitant change in fat intake did not account for the reduction in BP that occurred. The measures of BP minimised the chance for misclassification bias that was problematic with the cholesterol measurements. Notably the low 'intensity' of the intervention, an average increase in self-reported intake of 100g/d (which may have been overstated as the study was not blinded), still led to reductions in BP accompanying advice to increase fruits and vegetables.

Homocysteine

Biomarker study 7h: Appel et al. (2000) [91] conducted an RCT of adults participating in the DASH study, none of whom had hypertension, hyperlipidemia, poorly controlled diabetes, took vitamin or mineral supplements or medications that affect blood pressure, or had evidence of kidney dysfunction. After a three-week runin, 31 participants were randomised to the control group and 41 to the **fruit and vegetable** intervention group. After the eight-week intervention, serum homocysteine increased for both groups, though non-significantly less so for the intervention group (0.25µmol/L). Quality issues noted for the other DASH studies apply here, and overall the intervention may have been insufficient to expect a reduction in serum homocysteine.

Biomarker study 8h: Silaste et al. (2003) [75] conducted a cross-over intervention study among 37 healthy Finnish female volunteers recruited from the University

Hospital of Oulu. Participants followed a baseline diet for two weeks, then an intervention or control diet for 5 weeks and crossed over treatment arms after a threeweek washout period. The baseline and washout diets were the participants' usual athome diet. The control diet contained only one serve of fresh fruit/vegetable/juice, 200µg folate, <200mg dietary cholesterol and was controlled in fatty acid content with 10% of energy coming from saturated fat. The intervention diet was otherwise similar but contained in total 600µg/d of folate, 400-500g of raw or steamed fresh vegetables, plus 60g of fresh paprika, two serves of fruit/juice, plus an unreported quantity of berries. Plasma homocysteine was significantly lower (1.1µmol/L) after the intervention than the control diet. A slightly greater difference in plasma homocysteine may have been detected with a longer washout period, as the washout may have been of insufficient duration since homocysteine was 0.3µmol/L lower after the washout than after the baseline period. This study used appropriate measures that minimised the chance for misclassification bias, monitoring indicated good compliance and the cross-over design eliminated the chance of an imbalance between intervention and control arms confounding results. Overall the findings of this study are trustworthy, however some caution in generalisation is necessary as the study used self-selected volunteers and only females. Also, the focus of this study was folate rather than fruits and vegetables, however the findings are applicable as folate-rich fruits and vegetables were the sole source of folate tested in this study.

Longitudinal Studies

One longitudinal study was located that addressed changes over time in biomarkers for CHD rather than CHD risk (presented in Appendix 6). This study showed evidence that men who consumed diets higher in fruits and vegetables had significantly less annual increase in blood pressure.

Biomarker study 9b: Miura et al. (2004) [92] analysed data collected in the Chicago Western Electric Study, which used a cohort of 2,107 male workers of the Chicago Western Electric Company aged 40-55 years at baseline in 1957-58. Their BPs were measured annually for seven years by trained physicians using mercury sphygmomanometers, and their diet were assessed at baseline and one year later by two nutritionists using the Burke Diet History method. This population consumed few fruits and vegetables, and three categories of intake were compared: low (less than 0.38 serves daily), moderate (0.38-1.125 serves daily) and high (more than 1.125 serves daily). After adjustment for most hypertension risk factors, moderate consumers of vegetables (0.38-1.125 serves) had significantly lower annual increases in systolic (0.4mmHg) and diastolic (0.17mmHg) BPs than low vegetable consumers. High consumers of vegetables had a non-significantly lower annual increases in systolic (0.28mmHg) and diastolic (0.22mmHg) BPs than low consumers. Compared with low consumers of **fruits**, moderate consumers had reductions in systolic (0.32mmHg) and diastolic (0.14mmHg) BPs, and high consumers had similar reductions in systolic (0.27mmHg) and diastolic (0.22mmHg) BPs. Only the differences indicated in italics reached statistical significance. Further adjustments for intake of several nutrients and vitamins attenuated these relationships substantially. indicating that part of the inverse associations with BP may stem from the presence or absence of these substances in fruits and vegetables. Dietary measures were appropriate, minimising the chance for misclassification bias. The population was likely representative of the workforce of the times, as the study used a random sample and had an adequate response rate (67%). However it should also be noted that population intakes of fruits and vegetables were very low compared with modern dietary recommendations and levels of intake. One major limitation of this study is that sodium intakes were not assessed, hence this potential confounder may have accounted in part for the findings.

Cross-sectional Studies

Appendix 7 presents the eight cross-sectional studies that assessed whether fruit and/or vegetable intake was associated with various biomarkers of CHD (total cholesterol, HDL, LDL, TC:HDL, HDL:LDL, triglycerides, systolic or diastolic BP or homocysteine). These studies generally looked at adults, while some looked at men and women separately, and one study focussed on children.

Blood Pressure

Biomarker study 10b: A study by Beitz et al. (2003) [93] in Germany of 1.628 women and 1,340 men aged 18 to 79 years showed women's systolic BP was approximately 5mmHg lower for each additional kg/day intake of fruits and vegetables (significant). This same study reported there were no significant associations with systolic BP for men, or for diastolic BP in men or women, but did not report the magnitude or direction of any of these observed differences. This study considered most possible factors that could confound a relationship between BP and intake of fruits and vegetables (age, BMI, smoking, SEP, region, season, physical activity, energy intake, sodium, alcohol, coffee, vegetarian diet, and health relatedquality of life issues). A small amount of residual confounding is possible as calcium and fatty acid intake were not discussed in this study, and based on findings of other studies, these factors may relate to BP and to fruit and vegetable intake, although they are unlikely to account for the findings. This study used good quality measure of fruit and vegetable intake: a computerised dietary history, which showed good correlations with 24-hr recall and 3-day dietary record, minimising the chance for misclassification bias. Findings are generalisable as the study was population-based, used a stratified random sampling, had an adequate response rate (61.4%), and achieved a representative sample. The findings relate to primary prevention, as the study excluded people with current or previous hypertension or who take medications that alter blood pressure; however findings may not apply to nursing mothers (who were excluded from the study).

Biomarker study 11b: Nagata et al. (2003) [94] studied the relationship between fruit and vegetable intake and BP among 294 men and 330 women who had no history of cancer, angina, heart attack, or diabetes, did not take anti-hypertensive or oral contraceptive medications, and who were recruited from a health check-up program at a general hospital in Japan. They found inverse associations between **fruit** intake and systolic and diastolic BPs for women and systolic BP for men, but a positive association with diastolic BP for men. None of these relationships were statistically significant and all correlations were weaker than ± 0.15 . The study also addressed **vegetable** intake and found inverse associations with systolic BP and positive associations with diastolic BP both for men and women. All associations were weak (less than ± 0.15), and only the reduction in systolic BP for men was statistically significant. A fairly large possibility for bias exists, likely towards the null, as the study's measure of intake showed poor validity against three-day dietary records for various nutrients and poor repeatability for vitamin C (which is a key component of fruits and vegetables). The generalisability of this study is limited as the representativeness of the sample is uncertain. While the response to the survey was high (97.3%), the study was conducted in a non-population setting and no details of the sampling procedure were provided.

Biomarker study 12b: Psaltopoulou et al. (2004) [95] looked at baseline data from a large, prospective cohort study of 20,343 Greek adults aged 20-80 years, and found significant inverse associations between **fruit** intake and both systolic and diastolic BPs. Each additional 200g of fruit intake was associated with 0.4-0.5mmHg reduction in BP (diastolic and systolic). They also found significant inverse associations between intake of vegetables and both systolic and diastolic BPs. Each additional 230g of vegetables daily was associated with a reduction in BP of 0.4-0.5mmHg systolic and diastolic. These associations may have been confounded by olive oil intake, as extra adjustment for olive oil intake halved the reduction in diastolic BP (0.2mmHg), which remained statistically significant, and changed the reduction in systolic BP to a non-significant 0.01mmHg. The study used a validated, semi-quantitative, food frequency questionnaire and appropriate BP measurements and considered most potential confounding factors. The main limitation of the study is that it used self-selected volunteers, however these were actively recruited from the general population across Greece, increasing the chance of their representativeness to the Greek population. Also, there is a small possibility for residual confounding, as the paper did not report whether other possible dietary confounding factors were considered; however this is unlikely to explain the entire relationship observed. Overall this study provided good evidence that intake of vegetables is associated with lower BP.

Blood Lipids

Biomarker study 13p: In a multi-centre, population-based study of 4,466 American adults in families with high CHD rates, randomly selected from one of four cohorts, **Djoussé et al. (2004)** [96] found an intake of 5.4 compared with 1.4 serves of **fruit and vegetables** daily was associated with a significant 0.2mmol/L reduction in LDL, and a significant 0.2 reduction in HDL:LDL ratio. This study reported associations with HDL and triglycerides were not statistically significant, but did not report the magnitude or direction of any associations found. Importantly, findings were similar when restricted to subgroups of those with a very high saturated fat intake, and those without baseline CAD or diabetes. This study considered confounding from most possible sources, used appropriate measures for lipid parameters, and employed a semi-quantitative food frequency questionnaire modified from a validated tool. This leaves some chance that misclassification bias reduced the observed relationships, which is lessened by the use of upper and lower intake quintiles for comparison.

Biomarker study 14p: In a study of 95 children aged six to 13years, Lindquist et al. (2000) [97] found weak, inverse, non-significant associations between both serum total cholesterol and serum triglycerides and the intake of either **fruits** or **vegetables**. This study adjusted for ethnicity, social class, and intake of other core foods. Some serious methodological issues with this study cast doubt over the findings. Firstly the sample is both small and non-random, which limits the generalisability of the

findings. Secondly, the dietary intake was assessed by three 24-hour recalls which showed very poor correlation between energy intake and expenditure measured by doubly-labelled water (r=0.25) at the individual level. The validity of intake of fruits, vegetables, or any of their key constituents, was not reported. This leaves a substantial chance that estimates were biased towards the null. Overall this study provides minimal evidence for a relationship between intake of fruits and vegetables and lipid biomarkers of CHD.

Biomarker study 15p: Deurenberg-Yap et al. (2001) [98] tested the associations between intake of **fruits** and serum total cholesterol, LDL, TCL:HDL and HDL among 2,408 Singaporean adults, who were randomly sampled from the population using a multistage design that deliberately over-sampled ethnic minorities. They reported that none of the associations were statistically significant but did not report the magnitude or direction of any associations. The study used a validated food frequency questionnaire, however this represented "diet in the last month" and the mean intake of fruits and vegetables was very low (approximately 1.3 ± 1 serves per day of each). One serious consideration in interpreting these negative findings is that the study relied entirely on the lack of statistical significance of the findings. This could be misleading, as the associations between dietary intake and serum lipids were not the primary hypotheses of this study, and the study design many not have had adequate statistical power to detect such associations.

Biomarker study 16p: In a study of 1,045 Brazilian adults, Fornés et al. (2000) [99] reported increasing frequency of **fruit** consumption was associated with a large, significant reduction in LDL (6 mg/dL), and smaller, non-significant reductions in HDL (0.5 mg/dL), after adjusting for age and gender. The relationship with LDL remained significant after adjustment for additional risk and intermediary factors, although the magnitude of adjusted estimates were not reported. Frequency of vegetable intake was significantly associated with a large reduction in LDL (3mg/dl) when adjusted for age and gender, and was still significantly associated after adjustment for other factors (magnitude not reported). Intake of vegetables was associated with a non-significant reduction (0.13mg/dL) in HDL, which was attenuated to virtually no reduction after adjusting for additional covariates (0.01mg/dL). The study tested frequencies but not quantities of intake, and although the authors reported the food frequency questionnaire was "successfully piloted", they did not report the validity of the measure of fruit and vegetable intake. Therefore, the exact 'dose' of fruits and vegetables associated with these reductions in LDL is unknown. For the lipid parameters, LDL was calculated rather than measured, which leaves some chance for measurement error, and also the storage procedures for blood samples were not described. The net effect of these methodological concerns is that findings are likely to slightly underestimate the true relationships between LDL and fruit and vegetable intake, and cannot rule out that frequent intake of fruits and vegetables might slightly reduce HDL.

Homocysteine

Two cross-sectional studies addressed the relationship between fruit and vegetable intake and plasma homocysteine.

Biomarker study 17h: Chrysohoou et al. (2004) [100] conducted a populationbased study in Greece of 1,128 adult men and 1,154 adult women and found plasma homocysteine was significantly inversely associated with both **fruits and vegetables**, although correlations were weak (r=-0.12 and r=-0.15, respectively). These correlations remained significant after adjustment for potential confounding and intermediary factors, but the magnitude of adjusted measurements were not described. Participants who had renal failure, liver disease, chronic obstructive pulmonary disease, or who used drugs that alter homocysteine were excluded from analyses. Measurement error was minimised as the study used appropriate measurement of plasma homocysteine, and used a validated food frequency questionnaire to assess fruit and vegetable intake. Findings are likely to be generalisable as the study used a random population sample and had an adequate response rate (68%). The study is also relevant to primary prevention as it excluded participants with CVD. This study supports an association between both fruit and vegetable intake and plasma homocysteine.

Biomarker study 18h: Gao et al. (2004) [101] conducted a population-based, crosssectional study in the United States of 445 Hispanic and 154 non-Hispanic white adults aged 60+ years. After considering other potential risk, they found a higher intake of **fruits and vegetables** (averaging 5.5 times daily compared with once daily) is associated with significantly lower plasma homocysteine (≈1µmol/L), and this association followed a dose-response pattern. They also found the odds of having high homocysteine (>10.4 μ mol/L for women and >11.4 μ mol/L for men) were significantly reduced with each additional serve/day of vegetables (approximately 20%). (The cut-off point for high homocysteine reflects the 95th percentile for young adults.) Measurement error was minimised in this study as it used a semi-quantitative food frequency questionnaire validated for use in this population and appropriate measurements of homocysteine. Residual confounding factors is unlikely to account for the results observed. Findings are generalisable as the sample was representative of the general population of older adults, however they may not have direct application to primary prevention, as many in this population have a history of one or more CVD conditions, including heart attack, stroke, other heart disease, and hypertension. This study supports the existence of an inverse association between serum homocysteine and fruit and vegetable intake, but on its own provides limited evidence that this relationship holds in the wider, disease-free population and cannot establish direction of the association.

C-reactive protein

Biomarker study 18c: Only the study by **Gao et al. (2004)** [101] addressed the relationship between **fruit and vegetable** intake and serum C-reactive protein, reporting a statistically significant, inverse association between intake of **fruits and vegetables** and C-reactive protein (1mg/L lower in those consuming fruits and vegetables frequently rather than once daily). The odds of clinically elevated C-reactive protein were significantly reduced ($\approx 20\%$) with each additional serving of fruit and vegetable intake. The cut-off used for high C-reactive protein (<10mg/dL) can predict long-term outcomes after coronary events. The study may have slightly underestimated associations with C-reactive protein, as very low concentrations <0.6mg/L could not be measured. Other limitations as noted above for biomarker study 18 in relation to homocysteine pertain here as well.

Summary of Evidence for an Association with CHD Biomarkers

Studies of fruit and/or vegetable intake that used biomarkers of CHD risk as outcomes were generally supportive of the findings from the case-control and cohort studies that assessed CHD incidence and/or mortality. The findings above should not be considered fully comprehensive, as the search strategy was designed to detect all studies that mentioned CHD or related terms, not each biomarker, therefore any studies that did not mention CHD would not have been included in this review.

The highest level of evidence is provided by experimental studies (summarised in Table 6 below). Randomised controlled trials generally found increased fruit and vegetable intake to result in reductions in BP (which were sometimes statistically significant). None of the randomised controlled trials found a significant reduction in serum cholesterol, LDL, TC:HDL, LDL: HDL, triglycerides nor a significant increase in HDL (relative to control diets). Only two experimental studies were located that measured serum homocysteine. While it was the study of higher quality that found a significant reduction in homocysteine with a diet high in fruits and vegetables, its findings should not be over-generalised as the trial used only a small number of female volunteers.

In addition to the experimental findings, a longitudinal study suggests an inverse association between fruit and vegetable consumption and BP. It found consistently across seven years greater increases in annual BP measurements among men who consumed very few fruits and vegetables, although this cannot be established conclusively as confounding was a strong possibility with this study. Several crosssectional studies also examined the relationship between fruit and/or vegetable intake and various CHD biomarkers. Although the evidence from these studies is considered of much less value, the findings generally lend support to a beneficial relationship between fruit and vegetable intake and BP, lipids, homocysteine and C-reactive protein. However, findings were not always consistent across all outcome measures and were reported in some population subgroups but not others.

			n= intervention,			
Study	Reference	Duration ^a	control	TC, LDL or ratio	Triglycerides	HDL
1a	Obarzanek et al, 2001	8 weeks	75, 78 men	inv*	inv, ns	inv, ns
Ta		0 WCCK3	70, 70 men	1110	1117, 113	pos,
			71, 67 women	inv & pos, ns	inv, ns	ns
2a	Broekmans et al, 2001	4 weeks	24,23	inv, ns	inv, ns	inv, ns
						inv,
3a	Freese et al, 2002	6 weeks	15, 13 (arm 1)	inv, ns		ns
			14,15 (arm 2)	pos, ns	-	pos, ns
4a	John et al., 2002	6 months	344, 346	pos, ns	-	-
				Systolic BP	Diastalia PD	
				Systolic DP	Diastolic BP	
5b	Conlin et al., 2000	8 weeks	49, 47	inv*	inv*	
5b 6b	Conlin et al., 2000 Moore et al, 2001	8 weeks 8 weeks	49, 47 24, 25	-		
				inv*	inv*	
6b	Moore et al, 2001	8 weeks	24, 25	inv* inv, ns	inv* inv, ns	
6b 2b	Moore et al, 2001 Broekmans et al, 2001	8 weeks 4 weeks	24, 25 24, 23	inv* inv, ns pos, ns	inv* inv, ns inv, ns	
6b 2b	Moore et al, 2001 Broekmans et al, 2001	8 weeks 4 weeks	24, 25 24, 23	inv* inv, ns pos, ns inv*	inv* inv, ns inv, ns	

Table 6: Summary of findings from interventions increasing consumption of fruits andvegetables on biomarkers of coronary heart disease

^a Duration of intervention period * significant at p<0.05

Part 5: Conclusions

- Overall, the consistency of findings across studies of CHD morbidity and mortality is most noteworthy. Irrespective of study design and specific outcome, and similarly for study populations differing by age, gender, or nationality, inverse associations were generally reported for fruit and/or vegetable intake and risk of CHD. In the context of this review, statistical significance was considered of secondary importance, because most of the studies were not designed specifically to assess the relationship between fruit and vegetable consumption and CHD risk. Hence many lacked sufficient statistical power for the observed results.
- Evidence points to potentially similar beneficial effects for fruits and vegetables. However, results rarely distinguished between fresh and processed foods (particularly with respect to vegetables). Hence, any emphasis on fresh fruits and vegetables must rely on other sources of information to suggest they might be more beneficial than processed versions.
- The magnitude of the inverse association varied substantially, from less than 10% to more than 50% reductions in risk. A major contribution to this variability is the metric of dietary exposure used in statistical analysis, namely whether associations were in relation to serves per day or top versus lowest quantile (and if the latter, whether tertiles, quartiles, or quintiles, etc, were used). The overall magnitude of consumption in the population studied was also potentially important, and there was some evidence for a threshold effect such that consumption at even higher levels were not necessarily more beneficial. Other study design features similarly may be important to the reported magnitude of the inverse association. Only a pooled analysis or a formal meta-analysis can help sort out what the average effect size might be across these studies.
- Substantial research exists to establish the biological plausibility of a reduced risk of CHD with increased consumption of fruits and vegetables.
- Research on biomarkers related to CHD risk provide early support for some of the hypothetical mechanisms underlying a reduction in CHD risk associated with consumption of fruits and vegetables.
 - Randomised, controlled trials to reduce blood pressure levels among adults with or without hypertension reinforce the inference that increased intake of fruits and vegetables has a beneficial effect.
 - Lipid levels are consistently, inversely associated with fruit and vegetable intake in observational studies, but findings from randomised, controlled trials are less consistent, showing null to moderate improvements.
 - Studies of homocysteine and c-reactive protein are still very limited, but some evidence suggests that levels of these CHD biomarkers may also be reduced with increased fruit and vegetable consumption.
- The epidemiologic evidence accumulating over the past decade is predominantly supportive of an inverse association between fruit and vegetable intake and risk of CHD morbidity and mortality: higher levels of intake generally reduce CHD risk.

There are a very few studies that fail to show such a relationship, and unique study characteristics may account for most of these. Stronger support for a beneficial effect of fruit and vegetable consumption on CHD risk must await large-scale, long-term, randomised, controlled trials focused on incidence of CHD and/or improved understanding of underlying biological mechanisms.

• The inferences from these studies seem applicable to Australia and New Zealand based on the incidence/mortality from CHD, the types of fruits and vegetables consumed, the quantities of intake, and the general, westernised lifestyle characteristic of participants in most of the studies.

References

1. Jansen, M.C.J.F., et al., *Plasma carotenoid levels in Dutch men and women, and the relation with vegetable and fruit consumption*. European Journal of Clinical Nutrition, 2004. 58: p. 1386-1395.

2. Levine, J.A. and M.Y. Morgan, *Assessment of dietary intake in man: a review of available methods.* Journal of Nutritional Medicine, 1991. 2(1): p. 65-81.

3. Pollard, J., et al., *Comparison of plasma biomarkers with dietary assessment methods for fruit and vegetable intake*. European Journal of Clinical Nutrition, 2003. 57(8): p. 988-998.

4. Smith-Warner, S.A., *Reliability and comparability of three dietary assessment methods for estimating fruit and vegetable intakes.* Epidemiology, 1997. 8(2): p. 196-201.

5. Lissner, L., *Measuring food intake in studies of obesity*. Public Health Nutrition, 2002. 5(6A): p. 889-892.

6. Bedard, D., *Underreporting of energy intake from a self-administered foodfrequency questionnaire completed by adults in Montreal.* Public Health Nutrition, 2004. 7(5): p. 675-681.

7. Kipnis, V., et al., *Bias in dietary-report instruments and its implications for nutritional epidemiology*. Public Health Nutrition, 2002. 5(6A): p. 915-923.

8. Bogers, R.P., et al., *Using a Correction Factor to Correct for Overreporting in a Food-Frequency Questionnaire Does Not Improve Biomarker-Assessed Validity of Estimates for Fruit and Vegetable Consumption.* Journal of Nutrition, 2003. 133(4): p. p1213-1219.

9. Surrao, J., et al., *Use of food quotients in human doubly labeled water studies: Comparable results obtained with 4 widely used food intake methods.* Journal of the American Dietetic Association, 1998. 98(9): p. 1015-1020.

10. Kristal, A.R., et al., *Precision and Bias of Food Frequency-based Measures of Fruit and Vegetable Intakes*. Cancer Epidemiology Biomarkers and Prevention, 2000. 9(9): p. 939-944.

11. Barkess, J.L., *Relative validity of two brief sets of questions to assess vegetable intake behaviours*. Asia Pacific Journal of Clinical Nutrition, 2003. 12(suppl): p. 23.

12. Michels, K.B., *Measurement of fruit and vegetable consumption with diet questionnaires and implications for analyses and interpretation*. American Journal of Epidemiology, 2005. 161(10): p. 987-994.

13. Liu, S., et al., *Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study*. American Journal of Clinical Nutrition, 2000. 72: p. 922-928.

14. Kellett, E., A. Smith, and Y. Schmerlaib, *The Australian Guide to Healthy Eating: Background Information for Consumers*. 1998, Public Health Division Commonwealth Department of Health and Family Services: Canberra.

15. Willett, W.C., *Adjustment for total energy intake in epidemiologic studies*. American Journal of Clinical Nutrition, 1997. 65(suppl): p. s1220-8.

16. Liu, S., et al., *Intake of vegetables rich in carotenoids and risk of coronary heart disease in men: The Pysicians' Health Study*. International Journal of Epidemiology, 2001. 30: p. 130-135.

17. Joshipura, K.J., et al., *The effect of fruit and vegetable intake on risk for coronary heart disease*. Annals of Internal Medicine, 2001. 134: p. 1103-1114.

18. Bazzano, L., et al., *Fruit and vegetable intake and the risk of cardiovascular diesease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study.* American Journal of Clinical Nutrition, 2002. 76(1): p. 93-99.

19. Rissanen, T.H., et al., *Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study.* The Journal of Nutrition, 2003. 133(1): p. 199-204.

20. Steffen, L.M., et al., Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. American Journal of Clinical Nutrition, 2003. 78: p. 383-390.

21. Genkinger, J.M., et al., *Fruit, vegetable, and antioxidant intake and all cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland.* American Journal of Epidemiology, 2004. 160(12): p. 1223-1233.

22. Tucker, K.L., et al., *The Combination of High Fruit and Vegetable and Low Saturated Fat Intakes Is more Protective against Mortality in Aging Men than is Either Alone: The Baltimore Longitudinal Study of Aging.* The Journal of Nutrition, 2005. 135(3): p. 556-561.

23. Appelby, P.N., et al., *Mortality and fresh fruit consumption*. IARC Scientific Publications, 2002. 156: p. 131-133.

24. Martínez-Gonazález, M.A., et al., *Role of fibre and fruit in the Mediterranean diet to protect against myocardial infarction: a case-control study in Spain.* European Journal of Nutrition, 2002. 56: p. 715-722.

25. Martínez-Gonazález, M.A., et al., *Mediterranean diet and reduction in the risk of a first acute myocardial infarction: an operational health dietary score*. European Journal of Nutrition, 2002. 41: p. 153-160.

26. Yusuf, S., et al., *Effect of potentially modifiable risk factors associated with mycardial infarction in 52 countries (the INTERHEART study): case control study.* The Lancet, 2004. 364(9438): p. 937-952.

27. Rastogi, T., et al., *Diet and risk of ischemic heart disease in India*. American Journal of Clinical Nutrition, 2004. 79: p. 582-592.

28. Tavani, A., et al., *Influence of selected lifestyle factors on risk of acute myocardial infarction in subjects with familial predisposition for the disease.* Preventive Medicine, 2004. 38: p. 468-472.

29. Anderson, J.W., et al., *Whole grain foods and heart disease risk*. Journal of the American College of Nutrition, 2000. 19(6): p. 291S-299S.

30. Hansson, G.K., *MECHANISMS OF DISEASE: Inflammation, Atherosclerosis, and Coronary Artery Disease.* New England Journal of Medicine, 2005. 352(16): p. 1685-1695.

31. Davies, M., *Stability and instability: two faces of coronary atherosclerosis: the Paul Dudley White Lecture 1995.* Circulation, 1996. 94:(8): p. 2013-2020.

32. Cavendish, J.J., R.V. Fugit, and M.S. Safani, *Role of antiplatelet therapy in cardiovascular disease I: acute coronary syndromes*. Current Medical Research and Opinion, 2004. 20(11): p. 1839-1843.

33. Feeney, M., *Fruits and the prevention of lifestyle-related diseases. Clinical and Experimental Pharmacology and Physiology.* 2004. 31(s1): p. s11-s13.

34. Ripsin, C.M., J.M. Keenan, and D.R.J.e.a. Hacobs, *Ripsin, C.M., Keenan, J.M., Hacobs, D.R. Jr et al. (1992) Oat products and lipid lowering. A meta-analysis. JAMA 267, 3317-3325.* JAMA, 1992. 267(24): p. 3317-3325.

35. Bazzano, L.A., M.K. Serdula, and S. Liu, *Dietary Intake of Fruits and Vegetables and Risk of Cardiovascular Disease*. Current Atherosclerosis Reports, 2003. 5(3): p. 492-499.

36. Liu, S. and J. Manson, *Dietary carbohydrates, physical inactivity, obesity, and the "metabolic syndrome" as predictors of CHD*. Current Opinions in Lipidology, 2001. 12(4): p. 395-404.

37. Liu, S. and W.C. Willet, *Dietary glycemic load and atherothrombotic risk*. Current Atherosclerosis Report, 2002. 4(6): p. 454-461.

38. Choy, P.C., et al., *Lipids and atherosclerosis 1,2*. Biochemistry and Cell Biology, 2004. 82(1): p. 212-224.

39. Maron, D.J., S. Fazio, and M.F. Linton, *Current perspectives on statins*. Circulation, 2000. 101(2): p. 207-213.

40. Heinecke, J.W., Oxidants and antioxidants in the pathogensis of atherosclerosis: implications for the oxidised low density lipoprotein hypothesis. Atherosclerosis, 1998. 141(1): p. 1-15.

41. Kritharides, L. and R. Stocker, *The use of antioxidant supplements in coronary heart disease. NHF Position statement.* Atherosclerosis, 2002. 164: p. 211-219.

42. Witzum, J.L., *Role of oxidised low density lipoprotein in atherogenesis*. British Heart Journal, 1993. 69(1 suppl): p. 512-518.

43. Wu, H., K.S. Moulton, and C.K. Glass, *Macrophage scavenger receptors and atherosclerosis*. Trends in Cardiovascular Medicine, 1992. 2(6): p. 220-225.

44. Heinecke, J.W., H. Rosen, and A. Chait, *Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture*. Journal of Clinical Investigation, 1984. 74(5): p. 1890-1894.

45. Reuter, H.D., H.P. Koch, and L.D. Lawson, *Therapeutic effects and applications of garlic and its preparations*, in *Garlic: the science and therapeutic application of Alliium sativum L., and related species*, H. Koch, Lawson, L.D., Editor. 1996, Williams and Wilkins: Baltimore. p. pp135-212.

46. Boullin, D.D., Garlic as platelet inhibitor. Lancet, 1981. 1: p. 776-777.

47. Makheja, A.N., J.Y. Vanderhoek, and J.M. Bailey, *Inhibition of platelet* aggregation and thromboxane synthesis by onion and garlic. 1979. 1(2): p. 781.

48. Lampe, J., *Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies.* American Journal of Clinical Nutrition, 1999. 70(3): p. s475-s490.

49. Wu, K., *Platelet activation mechanisms and markers in arterial thrombosis.* J Intern Med, 1996. 239(1): p. 17-34.

50. Trip, M.D., et al., *Platelet hyperactivity and prognosis in survivors of MI*. New England Journal of Medicine, 1990. 322:: p. 1549-1554.

51. Patrono, C., Prevention of MI and stroke by aspirin:

different mechanisms? Different dosage? Thromb. Res., 1998. 92(1 suppl.): p. s7-s12.

52. Conlin, P.R., et al., *The effect of dietary patterns on blood pressure control in hypertensive patients: results from the Dietary Approaches to Stop Hypertension (DASH) trial.* American Journal of Hypertension, 2000. 13: p. 949-955.

53. John, J.H., et al., *Effects of frui and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial.* Lancet, 2002. 359(9322): p. 1969-1974.

54. Brown, A.A. and F.B. Hu, *Dietary modulation of endothelial function: implications for cardiovascular disease*. American Journal of Clinical Nutrition, 2001. 73: p. 673-686.

55. Nayak, D.U., et al., *Antioxidant vitamins and enzymatic and synthetic oxygenderived free radical scavengers in the prevention and treatment of cardiovascular disease.* Heart Disease, 2001. 3(1): p. 28-45. 56. Houston, M.C., *Nutraceuticals, Vitamins, Antioxidants, and Minerals in the Prevention and Treatment of Hypertension.* Progress in Cardiovascular Diseases, 2005. 47(6): p. 396-449.

57. Ceriello, A., et al., *Anti-oxidants show an anti-hypertensive effect in diabetic and hypertensive subjects.* Clinical Science, 1991. 81(6): p. 739-742.

58. Galley, H.F., et al., *Combination oral antioxidant supplementation reduces blood pressure*. Clinical Science, 1997. 92(4): p. 361-365.

59. Solzbach, U., et al., *Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients*. Circulation, 1997. 96(5): p. 1513-1519.

60. Kotchen, T.A. and D.A. McCarron, *AHA Science Advisory*. *Dietary electrolytes and BP*. Circulation, 1998. 98: p. 613-617.

61. Sacks, F.M., et al., *Effects on BP of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet.* New England Journal of Medicine, 2001. 344(1): p. 3-10.

62. Midgley, J.P., et al., *Effect of reduced dietary sodium on BP: A meta-analysis of randomized controlled trials (comments)*. JAMA, 1996. 275(20): p. 1590-1597.

63. Cutler, J.A., D. Follman, and P.S. Allender, *Randomized trials of sodium reduction: An overview.* American Journal of Clinical Nutrition, 1997. 65(2): p. s643-s651.

64. Graudal, N.A., A.M. Galloe, and P. Garred, *Effects of sodium restriction on BP, renin, aldosterone, catecholamines, cholesterols, and triglyceride: A meta- analysis.* JAMA, 1998. 279(20): p. 1383-1391.

65. Whelton, P.K. and J. He, *P.K. Whelton and J. He, Potassium in preventing and treating high blood pressure.* Semin. Nephrol., 1999. 19(5): p. 494–499.

66. Siani, A., et al., *Increasing the dietary potassium intake reduces the need for antihypertensive medication*. ANN. INTERN. MED., 1991. 115(10): p. 753-759.

67. Katakam, P., et al., *Endothelial dysfunction precedes hypertension in diet induced insulin resistance*. American Journal of Physiology, 1998. 275(3 pt 2): p. r788-r792.

68. Pereira, M.A. and J.J. Pins, *Dietary fiber and cardiovascular disease: Experimental and Epidemiologic advances*. Current Atherosclerosis Report, 2000. 2(6): p. 494-502.

69. Shcerrer, U. and C. Sartori, *Defective nitric oxide synthesis: a link between metabolic insulin resistance, sympathetic overactivity and cardiovascular mortality.* European Journal of Endocrinology, 2000. 142: p. 315-323.

70. Hasler, C.M., S. Kundrat, and D. Wool, *Functional foods and cardiovascular disease*. Current Atherosclerosis Report, 2000. 2(6): p. 467-475.

71. Macgregor, G.A. and F.J. He, *Importance of controlling BP*. Climacteric, 2005. 8(3 suppl.): p. 13.

72. Moses, E., *The treatment of CHD: An update--Part 1: An overview of the risk factors for cardiovascular disease.* Current Medical Research and Opinion, 2001. 17(1): p. 18-26.

73. Ganji, V. and M.R. Kafai, Frequent consumption of milk, yoghurt, cold breakfast cereals, peppers and cruciferous vegetables and intakes of dietary folate and riboflavin but not vitamins b-12 and b-6 are inversely associated with serum total homocysteine concentrations in the US population. American Journal of Clinical Nutrition, 2004. 80(6): p. 1500-1507.

74. Fokkema, M.R., et al., *Influence of vitamin optimized plasma homcysteine cutoff values on the prevalence of hyperhoomcysteinemia in healthy adults.* Clinical Chemistry, 2001. 47: p. 101-107.

75. Silaste, M.-L., et al., *Plasma homocysteine concentration is decreased by dietary intervention*. British Journal of Nutrition, 2003. 89: p. 295-301.

76. Nygard, O., et al., *Plasma homocysteine levels and mortality in patients with coronary artery disease*. New England Journal of Medicine, 1997. 337(4): p. 230-236.

77. Weiss, N., et al., *Cellular redox dstate and endothelial dysfunction in mildly hyperhomocysteinemic systathoinine beta-synthase deficient mice.* Arterioscler. Thromo. Vasc. Biol., 2002. 22(1): p. 34-41.

78. Tsai, J.C., et al., *Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis.* Proc Natl. Acad Sci. USA, 1994. 91(14): p. 6369-6373.

79. Tsai, J.C., et al., *Induction of cyclin A gene expression by homocysteine in vascular smooth cells*. Journal of Clinical Investigation, 1996. 97(1): p. 146-153.

80. McCully, K.S., *Vascular pathology of homocysteinemia: implicationds for the pathogensis of arteriosclerosis.* American Journal of Pathology, 1969. 56(1): p. 111-128.

81. O, K., et al., *Homocysteine stimulates the production and secretion of cholesterol in hepatic cells*. Biochim. Biophys. Acta., 1998. 1393(2-3): p. 317-324.

82. Muskiet, F.A.J., *The importance of (early) folate status to primary and secondary coronary artery disease prevention*. Reproductive Toxicology, 2005. 20(3): p. 403-410.

83. Mathers et al., *The burden of disease and injury in Australia*. 1999, AIHW: Canberra.

84. Ministry of Health, *Progress on Health Outcomes 1999. 7th annual report*, in *State of the Public Health Ministry of Health: New Zealand.* 1999: [online] **www.moh.govt.nz/moh.nsf/0/5b3ac5e440f6ccd7cc2569b8007e5e9f** (accessed 10/11/2005).

85. Australian Institute of Health and Welfare, *Australian Health Trends, 2001*. 2001: [online] <u>www.aihw.gov.au/publications/phe/aht01/</u> (accessed 10/11/2005).

86. Vogel, R.A., M.C. Corretti, and G.D. Plotnick, *The postprandial effect of components of the Mediterranean Diet on endothelial function*. Journal of the American College of Cardiology, 2000. 36(5): p. 1455-1460.

87. Obarzanek, E., et al., *Effects of blood lipids of a blood pressure-lowering diet: that Dietary Approaches to Stop Hypertension (DASH) Trial.* American Journal of Clinical Nutrition, 2001. 74: p. 80-89.

88. Broekmans, W., et al., *Fruit and vegetables and cardiovascular risk profile: a diet controlled intervention study*. European Journal of Clinical Nutrition, 2001. 55: p. 636-642.

89. Freese, R., et al., *High intakes of vegetables, berries and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in health subjects.* American Journal of Clinical Nutrition, 2002. 76: p. 950-960.

90. Moore, T.J., et al., *DASH (Dietary Approaches to Stop Hypertension) diet is effective treatment for stage 1 isolated systolic hypertension*. Hypertension, 2001. 38: p. 155-158.

91. Appel, L.J., et al., *Effect of dietary patterns on serum homocysteine*. Circulation, 2000. 102: p. 852-857.

92. Miura, K., et al., *Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men.* American Journal of Epidemiology, 2004. 159(6): p. 572-580.

93. Beitz, R., G.B.M. Mensink, and B. Fischer, *Blood pressure and vitamin C and fruit and vegetable intake*. Annals of Nutrition and Metabolism, 2003. 47(5): p. 214-220.

94. Nagata, C., et al., *Association of blood pressure with intake of soy products and other food groups in Japanese men and women.* Preventative Medicine, 2003. 36: p. 692-697.

95. Psaltopoulou, T., et al., *Olive oil, the Mediterranean diet, and arterial blood pressure: the Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study.* American Journal of Clinical Nutrition, 2004. 80: p. 1012-1018.

96. Djoussé, L., et al., *Fruit and vegetable consumption and LDL cholesterol: the National Heart, Lung and Blood Institute Family Heart Study.* American Journal of Clinical Nutrition, 2004. 79: p. 213-217.

97. Lindquist, C.H., B.A. Gower, and M.I. Goran, *Role of dietary factors in ethnic differences in early risk of cardiovascular disease and type 2 diabetes.* American Journal of Clinical Nutrition, 2000. 71: p. 725-732.

98. Deurenberg-Yap, M., et al., *Can dietary factors explain differences in serum cholesterol profiles among different ethnic groups (Chinese, Malays and Indians) in Singapore?* Asia Pacific Journal of Clinical Nutrition, 2001. 10(1): p. 39-45.

99. Fornés, N.S., et al., *Food frequency consumption and lipoproteins serum levels in the population of an urban area, Brazil.* Revista de Saúde Pública, 2000. 34(4): p. 380-387.

100. Chrysohoou, C., et al., *The associations between smoking, physical activity, dietary habits and plasma homocysteine levels in cardiovascular disease-free people: the 'ATTICA' study.* Vascular Medicine, 2004. 9: p. 117-123.

101. Gao, X., O.I. Bermudez, and K.L. Tucker, *Plasma C-Reactive Protein and Homocysteine Concentrations Are Related to Frequent Fruit and Vegetable Intake in Hispanic and Non-Hispanic White Elders.* The Journal of Nutrition, 2004. 134(4): p. 913-918.

102. Kromhout, D., et al., *Alcohol, Fish, Fibre and Antioxidant Vitamins Intake do not Explain Population Differences in Coronary Heart Disease Mortality.* International Journal of Epidemiology, 1996. 25(4): p. 753-759.

Appendix 1: Search Details

EBSCO Host

Databases searched:

Academic Search Elite, Australia/New Zealand Reference Centre, Biological Abstracts, Pre-CINAHL, CINAHL, MEDLINE, PsycARTICLES, and PsycINFO.

Searches were conducted for the following words in subject terms:

- 1. Vegetabl* AND coronary
- 2. (Frui* AND coronary) NOT vegetabl*
- 3. (Vegetabl* AND cardiovascular) NOT coronary
- 4. (Frui* AND cardiovascular) NOT coronary NOT vegetabl*

ProQuest

Databases searched:

Academic Research Library, AMA titles, AMA titles: abstracting and indexing, Health and medical complete, ProQuest dissertations & theses, ProQuest psychology journals, ProQuest science journals, ProQuest social science journals, and ProQuest women's interest.

A search of the default fields was made for:

(fruit **OR** fruits **OR** vegetables **OR** vegetable) **AND** (coronary **OR** cardiovascular **OR** heart)

Blackwell Synergy

Databases searched: The "all journals" option was selected

A search of abstracts was conducted for: (fruit **OR** vegetable) **AND** (coronary **OR** cardiovascular)

Appendices 2-7: Review tables for studies from 2000 onwards

*p<0.05

Symbols used:

*** p<0.001 **p<0.01

Abbreviations used:

OR= Odds Ratios CI = Confidence Interval AMI= Acute Myocardial Infarction MI= Myocardial Infarction CHD= Coronary Heart Disease LDL= Low Density Lipoprotein HDL= Hight Density Lipoprotein TC= Total Cholesterol RCT= Randomised Control Trial Apo= ApoLipoprotein Vit= Vitamin Years v =BMI= Body Mass Index (kg/m²) etOH= Alcohol sve= Serve /d=Per Day

Note: Serving = USDA servings=1/2 c fruits or vegetables or 1 cup juice or 2 cups leafy salad greens

Appendix 2: Fruits, Vegetables and CHD – Observational Studies (Prospective Cohort)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results		$\mathbf{D} = \mathbf{O}\mathbf{D}\mathbf{S}\mathbf{C}\mathbf{I}\mathbf{V}\mathbf{a}$		<u> </u>			Comments
Liu et	Cohort	39127	5 y	Fruit	Incident	Relative	Risk (and	95% CI) for CVD					In professional women, after
al.,	study	female	follow-	intake,	CVD,				Quintiles of inta		_		adjusting for most CVD risks -
2000		health	up (av)	vegetable	incident MI,		1 (ref)	2	3	4	5	p for	risk CVD onset was non-
		professiona	,	intake		Fruit ^a	serves/d 1.00	serves/d 0.66 (0.48 – 0.91)	serves/d 0.72 (0.52 – 0.97)	0.82 (0.61 – 1.11)	0.84 (0.63 – 1.13)	trend 0.67	significantly lower with daily
United		is without		(quintiles)	Diagnosis:	Fruit ^b	1.00	0.73 (0.52 – 1.01)	0.72(0.52 - 0.97) 0.70(0.50 - 0.99)	0.91 (0.66 – 1.26)	0.96 (0.70 – 1.33)	0.69	intake of:
States		hx CVD	Follow-	(1)	Incident	1 run	0.6	1.3	1.9	2.6	3.9	0.00	• 4 vs 0.6 serves of fruit (by
010100		1	up of all	(I serving=	CVD (MI,	Veg a	1.00	1.08 (0.80 – 1.44)	0.81 (0.60 - 1.11)	0.88 (0.65 - 1.19)	0.84 (0.61 – 1.14)	0.11	≈ 4%)
Women'		45-75 yrs	participa	USDA	stroke,	Veg b	1.00	1.07 (0.78 – 1.46)	0.83 (0.59 – 1.16)	0.91 (0.66 – 1.27)	0.85 (0.61 – 1.19)	0.21	,
s Health		40 10 yis	nts until	serving)	CABG or	Datha	1.5	2.5	3.4	4.6	6.9	0.40	• 7 vs 1.5 serves of
Study			event or	serving)	PTCA, CVD	Both ª Both ^b	1.00 1.00	0.85 (0.63 – 1.15) 0.75 (0.54 – 1.04)	0.82 (0.61 – 1.11) 0.83 (0.60 – 1.14)	0.80 (0.59 – 1.08) 0.80 (0.57 – 1.10)	0.82 (0.60 – 1.10) 0.85 (0.61 – 1.17)	0.18 0.45	vegetables (by $\approx 15\%$)
Sludy		(Distant)				Dours	2.6	4.1	5.5	0.00 (0.37 – 1.10) 7.1	10.2	0.40	 10 vs 2.6 serves of both
		(Dietary	6 years	O a mai	death)		2.0		0.0		10.2		(by ≈ 15%)
CHD		study	after	Semi-	3 cardio-	Deletion	Diale (and						risk of onset of first AMI was non
Study #		includes	baseline	quantitative	logists, 1	Relative	RISK (and	95% CI) for MI	Quintiles of inte	-l			significantly lower with daily
1		98% of the	(195	FFQ 28	neurologist		1 (ref)	2	Quintiles of inta 3	аке 4	5	p for	intake of:
		39876	647	vegetable			serves/d	serves/d	serves/d	4	5	trend	• 4 vs 0.6 serves fruit (by \approx
		Women in	person-	items, 16	CABG/	Fruit ^a	1.00	0.66 (0.40 - 1.10)	0.45 (0.25 - 0.81)	0.64 (0.38 - 1.09)	0.57 (0.34 - 0.98)	0.04	34%)
		the WHS	years of	fruit items,	PTCA: self-	Fruit ^b	1.00	0.76 (0.44 – 1.34)	0.58 (0.32 – 1.09)	0.82 (0.46 – 1.47)	0.66 (0.36 – 1.22)	0.26	 7 vs 1.5 serves
		trial)	follow	9	report and		0.6	1.3	1.9	2.6	3.9		
			up)	responses	hospital	Veg a	1.00	0.84 (0.50 - 1.41)	0.57 (0.32 – 1.01)	0.78 (0.46 – 1.32)	0.79 (0.47 – 1.35)	0.36	vegetables (by≈ 12)
			• /	'never' to	records	Veg ^b	1.00 <i>1.</i> 5	0.94 (0.54 – 1.63) 2.5	0.55 (0.29 – 1.05) 3.4	0.87 (0.49 - 1.55) <i>4.6</i>	0.88 (0.50 – 1.58) 6.9	0.60	 10 vs 2.6 serves of both
				'6+ x/d')		Both ^a	1.00	0.49 (0.28 – 0.85)	0.69 (0.42 – 1.14)	0.50 (0.28 – 0.86)	0.62 (0.37 – 1.04)	0.07	(by ≈ 37%)
					CVD	Both ^b	1.00	0.45 (0.24 – 0.83)	0.78 (0.46 – 1.33)	0.51 (0.27 – 0.94)	0.63 (0.38 – 1.17)	0.21	risk of CVD onset for those
				Validated	deaths:		2.6	4.1	5.5	7.1	10.2		without prior co-morbidities was:
				similar	medical								• $\approx 55\%$ lower with intake
				populations	records,	Relative	Risk (and	d 95% CI) for CVE) amonast those v	vithout self-report	ed diabetes, histo	orv of	of 7 vs 1.5 serves
				populations	autopsy			bry of high cholest		in our con top of			vegetables daily
				Correlation	reports,		01011, 111010	siy of high onoice	Quintiles of inta	ake			(significant)
				with 7d	death		1 (ref)	2	3	4	5	p for	• $\approx 43\%$ lower with intake
							serves/d	serves/d	serves/d			trend	of 4 vs 0.6 serves fruit
				records:	certificates.	Fruit ^a	1.00	0.66 (0.37 – 1.16)	0.66 (0.37 – 1.16)	0.68 (0.39 – 1.21)	0.57 (0.32 – 1.04)	0.09	daily (not significant)
				apple 0.80,		Fruit °	1.00	0.71 (0.39 – 1.26)	0.37 (0.37 – 1.23)	0.79 (0.44 – 1.42)	0.57 (0.30 – 1.09)	0.15	
				grapefruit	MI: (WHO	Veg a	<i>0.6</i> 1.00	<i>1.3</i> 0.61 (0.35 – 1.08)	1.9 0.53 (0.29 – 0.95)	2.6 0.85 (0.50 – 1.41)	3.8 0.45 (0.24 – 0.84)	0.06	• $\approx 55\%$ lower with intake
				0.84,	criteria i.e.	Veg °	1.00	0.63 (0.35 - 1.14)	0.59 (0.33 – 1.09)	0.96 (0.54 – 1.61)	0.45(0.24 - 0.04) 0.45(0.24 - 0.89)	0.00	of 10 vs 2.2 serves of
				tomatoes	symptoms	, vog	1.5	2.5	3.4	4.5	6.8	0.11	both daily (significant)
				0.74,	+ ECG or	Both ^a	1.00	0.67 (0.38 – 1.20)	0.67 (0.38 – 1.20)	0.92 (0.55 – 1.57)	0.41 (0.21 – 0.80)	0.04	Issues:
				squash	enzymes)	Both ∘	1.00	0.68 (0.37 – 1.22)	0.77 (0.43 – 1.37)	0.95 (0.55 – 1.65)	0.45 (0.22 – 0.91)	0.09	Did not consider energy intake.
				0.50.		ـــــــــــــــــــــــــــــــــــــ	2.2	4.1	5.4	7.0	10.0		(Absence of adjustment for
					Stroke: new								saturated and total fat did not
					neurologic	a adjuste	d for age	, treatment group,	smoking b also	adjusted for BMI,	alcohol, physical		introduce confounding as these
					deficit			pplements, hx cho					were not related to CVD in this
					>24h, CT or			, treatment group,			tivity, supplemen	ts	study.
					MRI			,	,, u	- , p j			Quality rating: A
	1	I	1	1		I							Guanty ruting. / t

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results							Comments
Joshipura	Cohort	n=84251	8y follow	Intake of fruits, and	non-fatal	RR for CHD by fr	uit and	vegetable ir	ntake				After consideration of most
et al.,	study	women 34-	up	vegetables (USDA	MI, or fatal	servings/ day	Q1	Q2	Q3	Q4	Q5	1 serve/d	CVD risk factors, among
2001		59y,		serves/ day)	coronary	median (Q1 – Q5) All Fruits & Veges	(ref)					increase	health professionals with
		n=42158			disease	women	1	0.91	0.88	0.86	0.80	0.97	the highest compared the
Nurses'		men 40-		Semi-quantitative		5.82 (2.93 – 10.15) men	1	1.01	0.95	0.87	0.80	0.96	lowest intake (quintiles) the
Health		75y with		FFQ (different	MI by WHO	5.07 (2.54 – 9.15)							risk of CHD was:
Study		dietary data		versions, 11 or 28	criteria;	pooled	1	0.95 (0.84 - 1.08)	0.94 (0.83 – 1.08)	0.86 (0.75 – 0.99)	0.80 (0.69 – 0.93)	0.96 (0.94 – 0.99)	 significantly lower for
and		eligible: no		vegetable items, 6	considered	Vit C-rich F & V			. ,	,	. ,	, ,	intake of all fruit and
Health		CVD,		or 15 fruit items, 3	'probable' if	women 1.53 (0.54 – 3.08)	1	1.00	0.92	0.77	0.95	0.94	veg, vit C rich fruit
Profess-		cancer,		potato items)	confirmed	men	1	1.09	0.89	0.97	0.87	0.93	and veg, fruit, veg,
ionals		diabetes			by	1.42 (0.46 – 2.96) pooled	1	1.04	0.91	0.87	0.91	0.94	cruciferous veg, and
Follow up		5		(preset portion	interview		1	(0.92 - 1.19)	(0.80 – 1.04)	(0.70 – 1.07)	(0.79 – 1.04)	(0.88 - 099)	green leafy veg by
Study		Relatively		sizes, 9 responses	but no	All fruits	4	0.84	0.95	0.76	0.85	0.95	between ≈9% for vit
		similar SEP		never up to six or	medical	women 2.33 (0.86 – 4.54)	I	0.04	0.95		0.00		c rich fruit and veg to
CHD		within each		more times daily)	records.	men	1	0.91	0.94	0.86	0.74	0.92	20% for all fruits &
Study #2		cohort			Confirmed	2.09 (0.72 – 4.33) pooled	1	0.87	0.94	0.81	0.80	0.94	veg
(continued				Fruit & Vegetable	and			(0.76 – 0.99)	(0.83 – 1.08)	(0.70 – 0.93)	(0.69 – 0.92)	(0.90 - 0.98)	 12% lower for citrus
(continued		Deenenee		Groupings: Fruit -	probable	<u>Citrus fruit</u> women	1	0.94	0.91	0.91	0.88	0.93	fruit (not significant)
next page)		Response rate not		All, citrus & citrus	cases were included.	0.85 (0.08 - 1.80)							6-15% higher for
		recorded		juice	Fatal	men 0.86(0.08 – 1.88)	1	0.91	0.99	0.98	0.87	0.95	citrus juice and
		Tecolueu		Vegetables –	Coronary	pooled	1	0.93	0.95	0.94	0.88	0.94	potatoes (not
				All, cruciferous,	disease	Citrus juice		(0.81 – 1.06)	(0.83 – 1.08)	(0.83 – 1.08)	(0.77 – 1.00)	(0.87 – 1.01)	significant)
				green leafy &	definite if	women	1	0.90	1.05	0.89	0.95	0.95	
				potatoes	confirmed	0.43 (0.00 – 1.00) men	1	1.09	1.14	0.91	1.19	1.07	After consideration of most
				Fruits &	by hospital	0.43 (0.00 - 1.00)							CVD risk factors, with each
				Vegetables	record or	pooled	1	0.99 (0.82 – 1.20)	1.09 (0.95 – 1.24)	0.90 (0.77 – 1.04)	1.06 (0.85 – 1.32)	1.01 (0.90 – 1.14)	additional serve per day the risk of CHD was:
				All & Vitamin C rich	autopsy or			(0.02 1.20)	(0.00 1.21)	(0.11 1.01)	(0.00 1.02)	(0.00 1.11)	
					listed as	all results reporte	d adiu	stad for ago	cmoking al	oohol family	history ML	MI vitamin	 significantly lower for all fruit and your wit C
				"All vegetables"	cause of	supplement use,							all fruit and veg, vit C rich fruit and veg,
				excluded potatoes,	death on	hypertension, hyp							fruit, veg by 3-7%
				tofu & soybeans,	certificate,	пурепензіон, пур		esterorenna,	, energy, pos	sinenopausa		36.	• •
				dried beans, and	was most	 vitamin 	C rich	means con	taine > 30m	al convo			 significantly lower by 30% for green leafy
				lentils	plausible			ge from the r			nal adjustme	ant for	• •
					cause and			e, saturated					veg15% lower, not
					evidence of			for 1 serve/d					
					previous			.97 (0.95 – 1		iolai iruilis a	vegelables i	10111 0.90	significantly for
					coronary			ar for individu		voqotables (not roported	N N	cruciferous veg
					disease	 Results 	5111112		iai iiuits and	vegetables (not reported)	 1-14% higher for
					was								citrus juice and
					available.								potatoes (not
	L												significant)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results					/		Comments
Joshipura						RR for CHD by fr	uit and						Results were
et al.,						servings/ day median (Q1 – Q5)	Q1 (ref)	Q2	Q3	Q4	Q5	1 serve/d increase	Similar for men
2001						All veges	(161)					Increase	and women.
						women 3.34 (1.60 – 6.21)	1	0.89	0.92	0.80	0.77	0.93	 A little stronger
						men	1	0.96	1.00	0.94	0.87	0.97	in non-users
(continued from last						2.83 (1.63 – 5.37) pooled	1	0.92	0.96	0.86	0.82	0.95	rather than users
page)							•	(0.81 – 1.04)	(0.84 – 1.09)	(0.73 – 1.02)	(0.71 – 0.94)	(0.92 – 0.99)	of multivitamins
page)						Cruciferous veges women	1	0.90	0.85	0.83	0.80	0.76	(cruciferous vegetables &
						0.42 (0.14 – 0.95)	4						total vegetables
						men 0.4 (0.14 – 1.01)	1	0.87	0.95	0.86	0.93	0.96	only) and in
						pooled	1	0.89 (0.78 – 1.01)	0.89 (0.78 – 1.02)	0.84 (0.74 – 0.97)	0.86 (0.75 – 0.99)	0.86 (0.69 – 1.08)	current smokers
						Green leafy veges		. ,	,	. ,	, ,	. ,	(only total
						women 0.73 (0.16 – 1.51)	1	0.92	0.89	0.74	0.69	0.70	vegetables) than
						men	1	0.89	0.93	0.89	0.76	0.84	never or past
						0.59 (0.16 – 1.36) pooled	1	0.90	0.91	0.81	0.72	0.77	smokers.
						i i		(0.79 – 1.03)	(0.80 – 1.03)	(0.68 – 0.97)	(0.63 – 0.83)	(0.64 – 0.93)	similar for
						Potatoes women	1	1.01	0.86	0.75	0.95	0.78	persons with or
						0.43 (0.14 – 0.96)	4	1.41	1.14	1.40	1.41		without
						men 0.51 (0.14 – 1.02)	I	1.41	1.14	1.40	1.41	1.41	hypertension.Similar for
						pooled	1	1.19 (0.86 – 1.64)	0.98 (0.75 – 1.30)	1.03 (0.56 – 1.89)	1.15 (0.78 – 1.70)	1.06 (0.59 – 1.89)	 Similar for persons with
								(0.00 - 1.04)	(0.75 - 1.50)	(0.50 - 1.65)	(0.70 - 1.70)	(0.00 - 1.00)	diabetes.
						RR for CHD per	1 sorva	e increase of	fruits and ve	aetables hv i	multivitamin	use and	
						smoking status				getables by I	nantivitariiin		Issues:
										Never/ Past			Intake of subgroups of
						All fruits & veges		ultivitamin .92 – 0.99) 0.9	Multivitamin 98 (0.94 – 1.02)	Smokers 0.96 (0.94 – 0.9	Current S 99) 0.95 (0.91		fruits/vegetables small
						All fruits	0.94 (0	.89 – 1.00) 0.9	94 (0.87 – 1.00)	0.95 (0.90 – 1.0	0.93 (0.86	6 – 1.00)	in this population
						All vegetables Citrus fruit			00 (0.93 – 1.06) 98 (0.86 – 1.11)	0.97 (0.93 – 1.0 0.95 (0.87 – 1.0		- 0.98)) - 1.08)	
						Citrus juice	1.04 (Ò	.90 – 1.20) 1.	01 (0.82 – 1.23)	1.04 (0.91 – 1.1	9) 1.03 (0.72	2 – 1.47)	Further adjustments for
						Cruciferous veges Green leafy veges			01 (0.57 – 1.79) 78 (0.56 – 1.07)	0.87 (0.61 – 1.2 0.77 (0.59 – 1.0	24) 0.85 (0.61 00) 0.78 (0.61	- 1.19) - 0.99)	other nutrients (eg fatty
						Vit C rich F & V	0.94 (0	.87 – 1.02) 0.9	97 (0.88 – 1.07)	0.94 (0.88 – 1.0	0.92 (0.82	2 – 1.03)	acids, fibre, protein) did
						Potatoes	0.78 (0	.46 – 1.34) 1.1	27 (0.93 – 1.73)	1.12 (0.72 – 1.7	0.93 (0.42	2 – 2.06)	not substantially
							(()	with a a a b a d d	litional comin	d fruite and	agatablas (ubarouno [\]	change results.
						RR for CHD (95% Hypertensive 0.9						subgroups)	Quality rating: A
						Diabetic men 0.9							
							0 (0.02	2 - 0.33) Dia		- 0.00 (0.00 -	1.02)		

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Bazzano et al., 2002 United States NHEFS CHD Study #3	Cohort study	9608 adults (25-47y at baseline) CHD free (n=9156 with complete data) Recruitment: multistage stratified random probability sample Response rate not recorded	Baseline 1971- 1975, average 16.5y follow-up	Frequency of fruit & vegetable consumption (times/ day) FFQ (3 fruit & vegetable items, assesses intake over last three months) (Questionnaire asked about F&V of all kinds fresh canned, frozen cooked or raw and juices) Validation by single 24 hr recall (Spearman r=0.50)	Incidence and mortality from stroke, IHD, CVD Death or discharge codes (ICD-9;13) Stroke 430- 438 IHD 410-414 CVD 390- 459		After consideration of most CVD risk factors, intake of fruits and vegetables three or more times daily compared with less than once daily is associated with: • 1% higher risk of incident IHD (not significant); relationship not dose-response • 24% reduced risk of mortality from IHD (significant) relationship not dose-response • 27% reduced risk of mortality from CVD (significant); dose-response • 27% reduced risk of mortality from CVD (significant); dose-response relationship Adjusting only for age, race, sex and energy relationships were significant, inverse and linear for CVD & IHD mortality and IHD incidence Issues: classification of dietary exposure by frequency only not quantity Quality: B

NHEFS: National Health and Nutrition Examination Survey Epidemiologic Follow-up Study

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results Comments
Appelby et al., 2002 United Kingdom Health Food Shoppers study CHD Study #4	Cohort study	n=10741 adults (16-89y at baseline) 'health conscious', no prior cancer (except melanoma) Recruitment and response rate not reported	Baseline 1973- 1979 Follow up: until 31 Dec. 1997 (18-24y)	Frequency of fresh fruit vegetable consumption (1 serve daily vs. less often) "Diet and Lifestyle Questionnaire" Validity not reported	Mortality from IHD, all cause mortality Death codes (ICD-9) IHD 410- 414	RR and 95% Cl for All Cause and Ischemic Heart Disease mortality by intake fresh fruit After consideration of some CVD risk factors, people consuming a serve of fruit at least 1 serve daily versus less often)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Steffen	Cohort	n=11,940 adults	11 y	Intake of fruit and	Incident Coronary Artery Disease	RR for incidence of coronary artery disease across quintiles of	after adjusting for
et al.,	study	(45-64 y at	follow up	vegetables (USDA	(CAD), Incident ischemic stroke	intake of fruit and vegetables	standard CVD risk
2003	(multi-	baseline)		serves/d)		Quintiles RR (95%CI) for incident CAD	factors, among
	centre,	randomly			Annual phone calls, hospital	(serves/d) Model 1 Model 2 Model 3	healthy adults,
United	population	sampled no		66-item FFQ (15 veg	surveillance, death-certificate	Q1 (1.5) 1 (ref) 1 (ref) 1 (ref) Q2 (2.5) 0.96 (0.74 - 1.25) 1.08 (0.82 - 1.41) 1.10 (0.84 - 1.45)	consuming around
States	based)	CAD, stroke,		categories includes	registries	$\begin{array}{c} \textbf{Q2} (2.6) & 0.00 (0.14 + 1.26) & 1.00 (0.02 + 1.41) & 1.10 (0.04 + 1.46) \\ \textbf{Q3} (3.5) & 1.01 (0.78 - 1.32) & 1.23 (0.93 - 1.61) & 1.21 (0.91 - 1.60) \end{array}$	7.5 compared with
ARIC		heart attack,		potatoes, excludes		Q4 (5.0) 0.82 (0.62 – 1.09) 1.08 (0.80 – 1.46) 1.06 (0.78 – 1.44)	1.5 serves per day
Study		diabetes, cancer		fries and vegetables	Incident CAD: (criteria White et	Q5 (7.5) 0.59 (0.42 - 0.81) 0.85 (0.60 - 1.21) 0.82 (0.57 - 1.17) p trend 0.001 0.43 0.29	of fruits and
				in mixed dishes; 7	al.) first definite or probable MI,	p trend 0.001 0.43 0.29	vegetables was
CHD		approx 60%		fruit categories 1 for	silent MI by ECG definite CAD		associated with:
Study		participation rate		juice, 6 for fresh	death, coronary revascularization	RR for incidence of ischemic stroke across quintiles of intake of	 10-15%
#5		overall		fruits; fresh frozen		fruit and vegetables RR (95%CI) for incident Ischemic Stroke	lower risk of CAD
				and canned	Incident Stroke: (criteria National	Model 1 Model 2 Model 3	(non significant);
		Lower		included).	Survey of Stroke) first definite or	Q1 1 (ref) 1 (ref) 1 (ref)	not dose-
		participation by			probable cardioembolic or	Q2 1.47 (0.97 - 2.23) 1.60 (1.05 - 2.44) 1.55 (1.02 - 2.37)	response
		African			thrombotic brain infarction -	Q3 1.04 (0.66 – 1.62) 1.14 (0.72 – 1.82) 1.10 (0.69 – 1.76) Q4 0.91 (0.56 – 1.45) 1.09 (0.67 – 1.79) 1.04 (0.63 – 1.70)	 virtually no
		American men		Modified from 61-	computer algorithm, independent	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	difference in risk
		and women (42-		item FFQ (validated	review of medical records and	p trend 0.21 0.60 0.40	of stroke.
		49%) than white		elsewhere, Willet)	discharge summaries by 1 or 2		 63% lower
		American men			physicians	RR for incidence of coronary artery disease across quintiles of	risk of CAD
		and women (67-				intake of fruit and vegetables in White and African Americans	(significant) in
		68%)				RR (95%CI) for incident CAD (Model3)	upper vs lowest
						African Americans White Americans	quintile of intake
						<u>n≈3100</u> <u>n≈8800</u> Q1 1 (ref) 1 (ref)	among African
						$Q_2 = 0.96 (0.57 - 1.59) = 1.11 (0.80 - 1.55)$	Americans only
						Q3 0.70 (0.40 – 1.23) 1.48 (1.07 – 2.05)	(linear trend).
						Q4 = 0.75 (0.42 - 1.34) = 1.21 (0.84 - 1.75)	
						Q5 0.37 (0.17 – 0.80) 1.13 (0.75 – 1.71) p trend 0.01 0.48	Issues:
						p for interaction with race 0.01	Confidence intervals
							wide indicating
						Model 1: adjusted for age, race, sex, energy intake	possibility of small
						Model 2: adjusted as model 1 also smoking, physical activity,	effect in either
						alcohol, HRT in women	direction.
						Model 3: adjusted as model 2 plus BMI, waist-hip ratio, systolic	Quality Dating A D
						BP, anti-hypertensive medication use, HDL & LDL (CAD model	Quality Rating: A-B
						only)	

White et al., (1996) Community surveillance of CHD in the Atherosclerosis Risk in Communities (ARIC) Study: Methods and initial two years' experience Journal of Clinical Epidemiology, 49(2):223-233

Study	Decian	Dortioinanto		Diotory		Results						Commonto
Sludy	Design	Participants	Duration	Dietary Measures	Outcome	Results						Comments
Rissanen	cohort	2641 men	12.8 y	quintiles of	CVD-		or CVD-related	death across q	uintiles of intak	e of fruits, berri	ies and	After adjustment for energy,
	Sludy	1			Deali	Vegetables	Model 1	Model 2	Model 3	Model 4	Model 5	
Rissanen et al., 2003 Finland Kuopio Ischaemic Heart Disease Risk Factor (KIHD) CHD Study #6	cohort study	2641 men (1950 men no hx CVD at baseline) 42-60y population based, random sample (82.9% participated in study)	12.8 y follow up (baseline 1984- 1989)		CVD- Death Compute r linkage to death registry ICD-9 codes 390 – 459)	Vegetables Q1 (>133 g/d) Q2 (133-214 g/d) Q3 (215-293 g/d) Q4 (294-408 g/d) p (Q5 v Q1) p (Q5 v Q1) p (for trend) All models ad Model 1: adju Model 2: as 1 Model 3: as 2 Model 4: as 3	Model 1 1.00 (ref) 0.54 (0.39 – 1.06) 0.35 (0.19 – 0.64) 0.48 (0.28 – 0.82) 0.43 (0.24 – 0.76) 0.004 0.001 justed for energy sted for age an also urinary nic also BMI, syste also maximal of and dietary fac	Model 2 1.00 (ref) 0.71 (0.42 - 1.17) 0.42 (0.23 - 0.79) 0.59 (0.34 - 1.02) 0.56 (0.31 - 1.00) 0.050 0.020 gy by residuals d examination y cotine, alcohol blic & diastolic E bxygen uptake (Model 3 1.00 (ref) 0.77 (0.46 – 1.30) 0.46 (0.25 – 0.87) 0.56 (0.33 – 0.97) 0.59 (0.33 – 1.06) 0.078 0.020 method years BP, diabetes, L (a measure of c	Model 4 1.00 (ref) 0.76 (0.45 - 1.30) 0.49 (0.26 - 0.91) 0.60 (0.34 - 1.03) 0.61 (0.34 - 1.10) 0.101 0.037 DL, HDL, TAG ardiovascular f	Model 5 1.00 (ref) 0.76 (0.44 - 1.30) 0.50 (0.26 - 0.96) 0.62 (0.33 - 1.16) 0.66 (0.28 - 1.55) 0.342 0.127	 smoking and alcohol intake, among healthy men an intake of 400g per day or more compared with around 130g or less was associated with: ≈45% reduced risk of death by CVD (significant); doseresponse relationship ≈40% reduced risk of death by CVD (not significant) after adjustment for physical activity and possible intermediary factors (BMI, BP, diabetes, lipids); doseresponse relationship ≈35% reduced risk of CVD death (not significant) after adjustment for some of the nutrients contained in fruits and vegetables Issues: Did not adjust for fatty acids – baseline values suggest these were related to fruit and vegetable intake (≈5% (significant) difference in %E from saturated fat between upper and lower quintile of fruit and vegetable intake). Reduction in the risk ratio after
												adjustment for nutrients suggests these may partially be responsible for any protective effect of fruits an vegetables. Reduction in risk ratio with introduction of BMI, BP, diabetes and blood lipids suggests some of these may be intermedian processes between an effect of fru and vegetables on CVD risk).
							(0)					Quality: A - B

	Appendix 2 cont'd: Fruits, Vegetables and CHD – Observational Studies (Prospective Cohort)											
Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments						
Cohort Study	n=6151 adult	Baseline	Usual consumption fruits	Mortality from CVD	Hazard Ratios for death from CVD by quintiles of	Considering						

Annondix 2 cont'd: Fruite	Vegetables and CHD – Observational Studies (Prospective Cohort)	
Appendix Z cont u. Fruits	vegetables and CHD – Observational Studies (Prospective Conort)	

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Genkinger et	Cohort Study	n=6151 adult	Baseline	Usual consumption fruits	Mortality from CVD	Hazard Ratios for death from CVD by quintiles of	Considering standard CVD risk
al., 2004		residents of	1974	and vegetables,		intake of fruit and vegetables	factors:
		Maryland (with		cruciferous vegetables	Death certificates	HR (95%CI) ^a HR (95%CI) ^b	An intake of fruits and
United States		data) 30-93 y	13y follow-	(quintiles)	(ICD 9 th revision	Q1 0.89 sve/d 1.00 (ref) 1.00 (ref) Q2 1.61 sve/d 0.76 (0.54 – 1.08) 0.80 (0.56 – 1.12)	vegetables of around 5
			up		390 – 459) coded	Q2 1.61 sve/d 0.76 (0.54 – 1.08) 0.80 (0.56 – 1.12) Q3 2.31 sve/d 0.83 (0.60 – 1.15) 0.86 (0.62 – 1.20)	serves per day compared
CLUE Study /		volunteers from		61-item FFQ categories	by state	Q4 3.21 sve/d 0.74 (0.53 – 1.02) 0.79 (0.56 – 1.09)	with around one serve per
Oddessy		2 studies (non-		never to 2+ per day	nosologists	Q5 4.89 sve/d 0.71 (0.51 – 0.98) 0.76 (0.54 – 1.06)	day is associated with
Cohort		random sample)				p for trend 0.07 0.15	around 25-30% reduced
				Fruit: apple, applesauce,	No follow up status		risk of cardiovascular
CHD Study		did not exclude		pear, cantaloupe, orange,	on 3%.	Hazard Ratios for death from CVD by quintiles of	disease (significant).
#7		those with		grapefruit, other		intake of cruciferous vegetables	An intake of
		baseline			Participants also	HR (95%CI) ^a HR (95%CI) ^b Q1 0.03 sve/d 1.00 (ref) 1.00 (ref)	cruciferous vegetables of
		histories of CVD		Vegetables: tomato,	reported diagnoses	Q2 0.12 sve/d 0.95 (0.67 – 1.35) 0.99 (0.70 – 1.43)	around half a serve per day
		or other		broccoli, spinach, mustard	in follow up	Q3 0.17 sve/d 1.06 (0.77 – 1.46) 1.17 (0.84 – 1.62)	compared with virtually
		diseases		greens, green salad,	questionnaires	Q4 0.27 sve/d 0.94 (0.67 - 1.32) 1.03 (0.74 - 1.45)	none is associated with a
				sweet potatoes, yams		Q5 0.53 sve/d 0.83 (0.60 – 1.16) 0.89 (0.64 – 1.25) p for trend 0.27 0.51	non-significant reduction in
				other (potatoes excluded			risk of cardiovascular
				from analysis)		a adjusted for age, energy	disease of around 10-20%.
				Validity		b adjusted to age, energy b adjusted as a also smoking, BMI, cholesterol	Effect of fruits and
				Validity: Questionnaire validated		b adjusted as a also smoking, bivil, cholesteror	vegetables said to be
						Reported as not confounding results (data not	similar irrespective of
				against multiple food records. In groups of sex		shown) marital status, education, saturated fat	gender, overweight/ obesity
				and age correlations were:		intake, diagnosis prior to baseline of diabetes, MI	and smoking status.
				0.4-0.6 for energy		or cancer.	1
				0.50-0.57 for vit C.			Issues:
				0.52-0.64 for folate		Results similar when stratified by gender, BMI (not	Considered saturated fat intake
				0.32-0.04 101 101ate		shown) and for ever vs never smokers (results not	but not total fat or other fatty
						shown.	acids, physical activity, alcohol.
							Quality Rating: B
						Consuming 5 or more servings a day of fruits and	Guanty Fatting. D
						vegetables associated with CVD HR=1.04 95%CI	
						(0.76 – 1.42)	

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Tucker et al	Cohort	n=501 men	Follow-	Intake of fruit,	Mortality from	Risk Ratio (95%CI) for CHD with increasing intake of fruits and	In men, after considering most CHD risk
2005		aged	up of all	vegetables, fruit	CHD	vegetables	factors:
		around 30	participa	and vegetables		Model 1 Model 2 Model 3 (serves/d) OR (95%CI) OR (95%CI) OR (95%CI)	 Each additional daily serve of fruit
United		to 80y at	nts for an	(USDA serves/d)	3 physician	fruit 0.86 (0.70 - 1.05) 0.97 (0.78-1.20) 0.97 (0.79 - 1.20)	associated with \approx 14% reduced risk
States		baseline	average	7.1.1.1.1.1.1.1.1.1.1	consensus	veg 0.60 (0.46 - 0.78) 0.65 (0.50 - 0.85) 0.73 (0.54 - 0.97)	(not significant) of CHD. Risk
Deltimere		with at least 4d	of 18y.	7-d diet record at 4	death	fruit & veg 0.79 (0.69 – 0.92) 0.84 (0.72-0.99) 0.90 (0.76 – 1.05)	reduction negligible after adjusting
Baltimore Longitudinal		diet records		time periods 191- 1965, 1968-1975,	certificates, hospital and		for saturated fat intake.
Study of		for >1 visit,		1984-1991 1993-	physician	1) Adjusted for age, energy intake, BMI, etoH, physical activity,	Each additional daily serve of
Ageing		no angina		present (excluded	records,	supplement use	vegetables associated with a $\approx 40\%$
/ igoing		pectoris or		records within 2	autopsy data.	2) Adjusted as 1 also saturated fat	reduced risk of CHD (significant).
CHD Study		MI at		years of death or	CHD death:	3) Adjusted as 2 also for secular trend (year of first visit)	Risk reduction $\approx 35\%$ after adjusting for saturated fat
#8		baseline		CHD because may	acute MI or	Risk Ratios for CHD according to combined fat, fruit and	(significant).
				affect dietary	sudden	vegetable intake grouping	 Each additional serve of combined
		Response		intake)	coronary	Risk Ratio Risk Ratio	fruit and vegetables associated with
		rate not			death. Time	Model 4 Model 5	a reduction in risk of CHD of around
		recorded			of CHD	Low FV, Hi %SF 1.00 (ref) 1.00 (ref) Low FV, Low %SF 0.36 (0.15 – 0.84) 0.41 (0.17 – 0.98)	20% (significant). Risk reduction
					diagnosis by first Q-wave,	Hi FV, Hi %SF 0.33 (0.15 – 0.71) 0.46 (0.21 - 0.99)	around 16% (significant) after
					nonfatal MI or	Hi FV, Low %SF 0.24 (0.11 – 0.52) 0.37 (0.16 - 0.81)	adjusting for saturated fat and
					CHD death.	Fruit and vegetables_Hi FV >5 sve/d, Low <5 sve/d	around 10% (not-significant) also
					one dout.	<u>% Energy from saturated fat</u> Hi %SF ≥12 %, Low %SF <12%	considering when subjects were
						- i	recruited into study
						4) Adjusted as model 2.	 Statistical adjustments for saturated fat may be over-adjustments. Men
						5) Adjusted as model 3.	with both high fruit and vegetable
						Additional adjustments for n-3 fatty acids, PUFA, <i>trans</i> -fat, whole grains did not alter	intakes and low saturated fat
						results (not shown).	intakes had $\approx 63\%$ reduced risk of
							CHD, while those with one but not
						Note cut-off for % energy as saturated fat was 12% instead of	the other had a slightly lesser
						10% due to insufficient participants with low intake.	reduction in risk (although this was
						· · · · · · · · · · · · · · · · · · ·	not statistically significant).
							Quality rating: A
L	1	1	I			1	

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results			,	Comments
Liu et al.,	Cohort	n=15220	12 y	Intake of	Incident MI,	RR (95% CI)	for CHD across q	uintiles of vegetab	le intake	Among male health
2001	Study	male	follow-up	vegetables (USDA	First coronary	Qunitile	CHD	MI	CABG/ PTCA	professionals, after
		physicians	-	serves/ day)	artery bypass graft	(serves/d) Model 1				considering most CVD risk
United States		40-84 y (at			(CABG) or	Q1 (<1)	1.00 (ref)	1.00 (ref)	1.00 (ref)	factors, consuming 2.5+ vs <1
		baseline)		Semi quantitative	percutaneous	Q2 (1-1.49)	0.93 (0.81 - 1.08)	1.01 (0.79 – 1.30)	0.90 (0.75 – 1.08)	serve per day of vegetables is
Physician's		no heart		FFQ 'over the last	luminal coronary	Q3 (1.5-1.9)	0.88 (0.74 – 1.04)	0.82 (0.61 – 1.12)	0.90 (0.73 – 1.11)	associated with:
Health Study		disease,		year' incl 8	angioplasty	Q4 (2-2.49) Q5 (2.5 +)	0.82 (0.67 – 1.01) 0.71 (0.57 – 0.89)	0.92 (0.65 – 1.30) 0.79 (0.55 - 1.16)	0.77 (0.60 – 1.00) 0.67 (0.50 – 0.89)	• $\approx 20\%$ lower risk of
		stroke,		vegetable items	(PTCA),	p trend	0.001	0.79 (0.55 - 1.16) 0.16	0.07 (0.50 - 0.69) 0.002	onset of CHD
CHD Study		cancer		(preset portion	Incident CHD (ie.	Model 2				(significant); dose-
#9		enrolled in		sizes, 7 responses	either outcome)	Q1 (<1)	1.00 (ref)	1.00 (ref)	1.00 (ref)	response relationship
		the		'never' to '2+ times		Q2 (1-1.49) Q3 (1.5-1.9)	0.99 (0.85 – 1.15 0.93 (0.78 – 1.12)	1.05 (0.84 – 1.31) 0.90 (0.59 – 1.16)	0.94 (0.87 – 1.14) 0.99 (0.79 – 1.23)	• $\approx 20\%$ lower risk of
		Physician's		daily)	Diagnosis:	Q4 (2-2.49)	0.89 (0.71 – 1.10)	0.98 (0.67 -1.43)	0.88 (0.67 – 1.16)	initial MI (not
		Heath			PTCA and CABG	Q5 (2.5 +)	0.77 (0.60 – 0.98)	0.81 (0.59 – 1.31)	0.70 (0.51 – 0.95)	significant); not dose-
		Study RCT		Validation:	self-reported	p trend	0.03	0.24	0.03	response
		which took		does not claim to						• $\approx 30\%$ lower risk of
		a random		be validated per	MI classified by					CABG/ PTCA
		sample of		se. Claims ' a	WHO criteria. For			e defined by either	the MI or the CABG/	
		physicians		similar FFQ was	non-fatal MI used	PTCA outcom	nes)			response relationship
		in American		validated' for	review of medical	//				• $\approx 60\%$ reduced risk of
		American		vegetables	records. For fatal			r CABG/ PTCA) a		CHD for smokers
		Medical		r = .47 to .57	MI used death	vegetable inta		nd in people with a	a BMI <u>></u> 25	(significant); borderline
		Association		against another	certificates,	Model 1	Smokers Only	BMI <u>></u> 25		dose-response
				FFQ, and r = .29 to .54	hospital records,	Q1 (<1)	1.00 (ref)	1.00 (ref)		relationship
		response rate not			and observer	Q2 (1-1.49)	0.95 (0.66 - 1.39)	1.03 (0.84 – 1.25)		• $\approx 25\%$ reduced risk in
		recorded;		against multiple recall in different	reports (when death occurred	Q3 (1.5-1.9)	1.00 (0.65 – 1.57)	0.88 (0.70 – 1.11)		the overweight and
		69% with			outside of a	Q4 (2-2.49) Q5 (2.5 +)	0.84 (0.47 – 1.48) 0.40 (0.18 – 0.86)	0.80 (0.60 – 1.06) 0.73 (0.54 – 0.99)		obese (BMI>25) (not
		complete		populations	hospital setting)	p for trend	0.40 (0.10 - 0.00)	0.73 (0.54 - 0.55) 0.01		significant) borderline
		data			nospital setting)	Model 2				dose-response
		included in				Q1 (<1)	1.00 (ref)	1.00 (ref)		relationship
		analyses				Q2 (1-1.49) Q3 (1.5-1.9)	1.03 (0.69 – 1.55) 1.06 (0.65 – 1.73)	1.07 (0.86 – 1.32 0.93 (0.72 – 1.20)		
		analyses				Q4 (2-2.49)	0.75 (0.39 – 1.44)	0.91 (0.67 – 1.23)		Issues:
						Q5 (2.5 +)	0.41 (0.18 – 0.97)	0.74 (0.53 – 1.03)		did not adjust for other fatty
						p for trend	0.06	0.07		acids, energy
										questionable measurement of
							sted for age and t			dietary exposure
									sical activity BMI, hx	
						diabetes, hx h	nigh cholesterol, h	x hypertension, us	se of multivitamins	Quality rating: B

Appendix 3: Fruits, Vegetables and CHD – Observational Studies (Case-Control)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Yusuf et al., 2004 INTERHEART Study (52 Countries) (Europe [Western, Central & Eastern], Middle East, Africa, South Asia, China & Hong Kong, Southeast Asia & Japan, Australia & New Zealand, South America & Mexico, North America) CHD Study #10	Multi-centre Case Control Quality – good: dietary measure crude; participation rate unclear	15152 cases & 14820 from 52 countries Most aged 45-75 yrs, but more inclusive Recruitment all eligible cases in 262 coronary care units. Hospitals chosen by feasibility. Controls frequency matched for age & sex – hospital and community based. Response rates not recorded	2000-2002	Daily consumption of fruits & vegetables measure yes/no or quantitative amounts? "Structured Questionnaire" repeatability for consumption of fruits (kappa=0.66) repeatability for consumption of vegetables (kappa=0.52)	Initial AMI Diagnosis by symptoms, plus ECG	OR (95% CI) for CHD with daily fruit and vegetable consumption Adjusted 1 0.70 (0.64 - 0.77) Adjusted 2 0.70 (0.62 - 0.79) Adjusted 3 0.74 (0.66 - 0.83) 0.58 (0.48 - 0.71) Adjusted 4 Younger 0.69 (0.58 - 0.81) 0.72 (0.59 - 0.88) 0.62 (0.44 - 0.87) Older 0.72 (0.61 - 0.85) 0.77 (0.64 - 0.93) 0.55 (0.38 - 0.80) Adjusted for 1) age, sex, smoking 2) as '1' also diabetes, hypertension, abdominal obesity, psychosocial variables, exercise, etOH, Apo B/A ratio 3) age, sex, geographic region 4) sex smoking diabetes, hypertension, abdominal obesity, psychosocial variables, exercise, etOH, Apo B/A ratio	 Considering most standard CVD risk factors, consuming fruits and vegetables daily is associated with a reduction in risk of onset of heart disease: of ≈30% overall (significant) of ≈42% in women (significant) of ≈26% in men (significant) which is greatest in older women and least in older men results generally consistent across regions Issues: The measure does not capture quantities or distinguish between fruits/ vegetables/ juices. Therefore: Dose-response cannot be estimated. The estimated '≈30%' risk reduction applies to the unknown levels of and types of fruit and vegetable consumption in the 'daily' compared with 'not daily' groups. Differences by gender, and age groups may not reflect a biologically different effect of fruit and vegetable consumption. This is reinforced by the large difference gender estimates depending on which other factors were adjusted for. Does not adjust for intake of fatty acids, energy Effect is cumulative with other health behaviours – authors estimate eating fruits and vegetables, exercising and avoiding smoking could lead to about 80% lower relative risk for MI Quality: B

Appendix 3 cont'd: Fruits, Vegetables and CHD – Observational Studies (Case-Control)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results					/		Comments
Martínez- González	Case control	171 cases <80y adults	Oct 1999 to	Quintiles of fruit intake,	Initial AMI (non-fatal)			5% CI for CHD ac y by residuals me		consumption of fr	uits and vegetable	es	After adjusting for CVD risk factors:
et al.,	Design -	-	June	quintiles of	. ,		Q1	Q2	Q3	Q4	Q5	p for trend	a high intake
2002 Pamplona, Spain CHD Study #11 part 1	good Participation rate good, diet & outcome measures good, stats appropriate, adjustment appropriate	Recruitment: eligible cases admitted to any of three 'third level' hospitals in Pamplona Hospital based controls matched for age (5 y bands) & sex 95% response rate for both cases and controls	2000, Oct 2000 to Feb 2001	vegetable intake Semi- quantitative 136-item FFQ expanded from FFQ, validated for intakes of energy, protein, CHO, fats (saturated, mono- and poly- unsaturated), alcohol, cholesterol, fibre, vitamin A & vitamin C)	Diagnosis: 2+ ECG, ECG probable changes plus cardiac enzymes, symptoms plus enzymes	2) as '1' a physical a 3) as '2' a glycaemic	so adjust ctivity, m so adjust load, foli	arital status, occu ed for %energy f	upation, education rom alcohol, satu ergy-adjusted oliv	0.57 (0.26 - 1.26) 0.30 (0.11 - 0.82) 0.27 (0.08 - 0.89) 0.25 (0.08 - 0.74) 451 mption 0.82 (0.42 - 1.60) 0.59 (0.26 - 1.34) 1.44 (0.47 - 4.43) 0.92 (0.35 - 2.41) 657 n, History of eleva	t, energy-adjusted	0.19 0.16 0.14 - 0.35 0.15 0.79 -	of fruits is associated with ≈ 80% reduction in odds of CHD onset (sig). • A high consumption of vegetables associated with a non- significant reduction in odds of onset of CHD (≈20%) Threshold (not linear) effect for fruits suggested by similar OR in quintiles 3, 4 & 5. Issues: Results likely influenced by very high intakes in this population relative to other study populations. Quality rating: A

Appendix 3 cont'd: Fruits, Vegetables and CHD – Observational Studies (Case-Control)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Martínez-	Case control	n=171 cases	Oct 1999 to	Quintiles of fruit	Initial AMI (non-fatal)	OR (95% CI) of initial MI according to intakes of	After adjusting for CVD risk
González et		n=171 controls	June 2000,	intake, quintiles of		fruits, and vegetables	factors, odds of onset of CHD
al., 2002	Design - good	<80 y men and		vegetable intake	Diagnosis: 2+ ECG,	Adjusted a Additionally	were:
	Participation rate	women	Oct 2000 to		ECG probable	adjusted b	 ≈63% lower with intake of
Pamplona,	good, diet &		Feb 2001	quintiles 2-5 vs 1	changes plus cardiac	Fruit (g/d) Q1 <175 1 (ref)	at least 250g fruit relative
Spain	outcome	Recruitment:		(post-hoc cut offs)	enzymes, symptoms	Q2 175-252 0.28 (0.08 – 0.91)	to less than 175g daily
CHD Study	measures good,	eligible cases			plus enzymes	Q3 252-364 0.38 (0.13 – 1.10)	(significant) – smaller
#11 part 2	stats appropriate,	admitted to any of		Semi-quantitative		Q4 365-570 0.32 (0.11 – 0.97) Q5 >570 0.43 (0.14 – 1.34)	(≈35%) and not
	adjustment	three 'third level'		FFQ (136 items),		0.45 (0.14 - 1.54)	significant after
	appropriate	hospitals in		a sur a su dia di fua su		Q3,4,5 vs Q1 0.37 (0.14 – 0.96) 0.65 (0.16 – 2.61)	adjustment for other food
		Pamplona		expanded from		00.5 - 0.0 - 0.05 (0.44 - 0.00)	groups
		Hospital-based		FFQ, validated for		Q2-5 vs Q1 0.35 (0.14 – 0.89)	• ≈54% lower with intake of
		controls matched		intakes of energy,		Veg (g/d) Q1 <347 1 (ref)	at least 480g vegetables
		for age (5 y bands)		protein, CHO, fats		Q2 347-482 0.42 (0.16 – 1.08)	relative to less than 350g
		& sex		(saturated, mono-		Q3 482-583 0.36 (0.13 – 0.98)	daily (smaller (≈30% and
		Q 367		and poly-		Q4 583-744 0.61 (0.23 – 1.57) Q5 >744 0.42 (0.15 -1.20)	not significant after
		95% response rate		unsaturated),		QU 7 144 0.42 (0.10 - 1.20)	adjusting for other food
		for cases &		alcohol,		Q3,4,5 vs Q1 0.46 (0.21 – 1.04) 0.71 (0.23 – 2.17)	groups).
		controls		cholesterol, fibre,		Q2-5 vs Q1 0.45 (0.21 – 0.98)	Using the post-hoc determined
				vitamin A & vitamin		Q2-5 VS Q1 0.45 (0.21 - 0.30)	cut-offs, and not adjusting for
				C)		a) matched for any beautiful wonder adjusted for	other food groups, odds of CHD
				,		a) matched for age, hospital, gender adjusted for energy intake, smoking, BMI, hypertension, high	onset were:
						cholesterol, diabetes, physical activity, SES	• $\approx 65\%$ lower with intake of
						b) matched and adjusted as 'a' also adjusted for	at least 175g of fruit daily
						other food(s)/ food groups (olive oil, fibre, fish,	(significant)
						alcohol, meat/ meat products, white bread + rice	 ≈55% lower with at least
						+ pasta)	350g vegetables daily
						· pastaj	(significant)
							(eigninearit)
							Issues:
							Confidence intervals were quite
							wide with additional adjustments
							(perhaps dietary variables highly
							correlated, and relatively small
							sample size)
							Quality rating: A

Appendix 3 cont'd: Fruits, Vegetables and CHD – Observational Studies (Case-Control)

Study	Design	Participants	Duration	Dietary Measures	Outcome		esults			•	•	Comments
Rastogi	case-	n=350 cases,	approx	Daily intake fruits,	First AMI			Model 1	Model 2	Model 3	Model 4	After adjustment for other
et al., 2004	control study	n=700 controls matched for age, sex, hospital (aged	Jan 1999 to Dec 1999	vegetables (excludes potatoes), green	Diag- nosis by		Vegetables <u><1</u> serve/d 1-2 serve/ d 2-3 serve/ d	1.0 (ref) 0.85 (0.60 – 1.21) 0.79 (0.53 – 1.19)	1.0 (ref) 0.81 (0.54 – 1.21) 0.78 (0.49 – 1.25)	1.0 (ref) 0.73 (0.45 – 1.19)	1.0 (ref) 0.73 (0.44 – 1.20)	CVD risk factors and dietary factors, risk of onset of ischemic heart disease was:
India	multi- centre	21-74y av.52 ± 11y, 88% males)	1999	leafy vegetables, beans, potatoes,	clinical exam,		>3 serve/ d >3 serve/ d p for trend Green leafy	0.79 (0.33 – 1.19) 0.59 (0.32 – 1.08) 0.09	0.76 (0.49 – 1.25) 0.36 (0.18 – 0.73) 0.01	0.63 (0.35 – 1.22) 0.27 (0.11 – 0.64) 0.006	0.62 (0.34 – 1.12) 0.33 (0.13 – 0.82) 0.006	 ≈70% lower with >3 vs ≤1 serves of
CHD Study #12		Cases: 84% participation rate. Eligible all first AMI in 8 hospitals not pregnant, no previous MI or IHD, cancer, chronic kidney, GI, thyroid disease, prior (4wks) acute		fruits New Delhi: 149- item FFQ based on previous 24h recalls Bangalore: 141- item FFQ based on previous 24h recalls	ECG, and cardiac enzymes		≤1 serve/d 1-2 serve/d 2-3 serve/d >3 serve/d p for trend Potatoes ≤1 serve/d 1-2 serve/d 2-4 serve/d p for trend Fruit ≤1 serve/d Fruit ≤1 serve/d	$\begin{array}{c} 1.0 \ (ref) \\ 1.12 \ (0.75 - 1.66) \\ 0.78 \ (0.49 - 1.23) \\ 0.61 \ (0.37 - 0.98) \\ 0.002 \\ \hline 1.0 \ (ref) \\ 0.81 \ (0.55 - 1.19) \\ 1.15 \ (0.77 - 1.72) \\ 1.06 \ (0.65 - 1.71) \\ 0.7 \\ \hline 1.0 \ (ref) \\ 1.0 \ (ref) \\ 1.0 \ (ref) \\ 1.0 \ (o.82 - 1.48) \end{array}$	1.0 (ref) 0.93 $(0.59 - 1.50)$ 0.71 $(0.45 - 1.26)$ 0.43 $(0.24 - 0.75)$ 0.0002 1.0 (ref) 0.82 $(0.53 - 1.27)$ 1.27 $(0.80 - 2.00)$ 0.87 $(0.50 - 1.51)$ 0.8 1.0 (ref) 1.16 $(0.82 - 1.62)$	1.0 (ref) 0.83 (0.47 - 1.44) 0.60 (0.32 - 1.14) 0.33 (0.17 - 0.64) 0.0001 1.0 (ref) 1.05 (0.64 - 1.71) 1.37 (0.79 - 2.35) 0.75 (0.39 - 1.45) 0.3 1.0 (ref) 1.26 (0.84 - 1.91)	1.0 (ref) 0.85 (0.48 - 1.52) 0.55 (0.28 - 1.06) 0.34 (0.17 - 0.69) 0.0002 1.0 (ref) 1.08 (0.64 - 1.80) 1.47 (0.83 - 2.60) 0.86 (0.42 - 1.75) 0.7 1.0 (ref) 1.45 (0.46 - 1.25)	 vegetables daily (significant) (dose- response) ≈70% lower with >3 vs ≤1 serves of green leafy vegetables daily (significant) (dose- response) ≈20% lower with >3 vs ≤1 serves of
		viral infection. Controls: 99-100% participation rate. With minor ailments from (eye, ear, nose & throat, dermatology, orthopaedics, surgery, general medicine, gynaecology, other wards/clinics). Selected by1 of 2 methods. 1. Research assistant followed one physician and invited his/her patients who were eligible to participate. 2. Screened & invited to participate based on queue number.		Each 21 vegetable items, 16 fruit items, 5 bean items common veg were potatoes, tomatoes cucumber, onion, green leafy veg, gourds, okra, carrots common fruits were: bananas, mangoes, citrus fruit, papaya apples		Me hy hc Me ve	2-3 serve/ d >3 serve/ d <i>p</i> for trend odel 1: adju odel 2: adju odel 3: adju vpertension, ousehold inc odel 4: adju egetable and	0.88 90.58 - 1.33) 1.46 (0.89 - 2.39 0.4 sted for age, sex, sted as model 1 a sted as model 2 a hx diabetes, hx h some, Hindu religi sted as model 3 a d green leafy anal	1.15 (0.72 – 1.83) 1.96 (1.11 – 3.46) 0.04 , hospital also smoking (cig: also BMI, waist-hi nigh cholesterol, fi ion also cereal intake	1.21 (0.68 – 2.14) 2.11 (1.03 – 4.32) 0.06 arettes, bidis) p ratio, physical a amily hx IHD, alco , green leafy vege in cooking, musta	1.29 (0.71 – 2.35) 2.46 (1.15 – 5.25) 0.03	vs ≤1 serves of potatoes daily (not significant) • ≈2x higher for with >3 vs ≤1 serves of fruit daily (significant) Issues: No adjustment for energy but energy sources did not confound <i>Generalisability</i> - some fruits & vegetables not typical in Australia/ N.Z. Population tendency to undernutrition (India) vs over-nutrition (Aust & N.Z) esp. important regarding fruit & bean findings – could reflect lack of protein/energy Quality Rating: A

Appendix 3 cont'd: Fruits, Vegetables and CHD – Observational Studies (C	Case-Control)
--	---------------

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Tavani et al., 2004 Northern Italy CHD Study #13	combined 3 case-control studies	1713 cases, 2317 hospital controls <75 (1179 men 558 women) Cases: first AMI in study hospitals Controls: same hospital, diagnosis unrelated to CVD and major CVD risks (response over 95% in all studies) Exclusions: do not know family hx	1983- 1992 1988- 1999 1995- 1999	Frequency intake vegetables (portions/wk) Questionnaire administered by interviewer Reproducible for vegetable and fruit items, validated for nutrients. Fruit (fresh only) Vegetables (did not distinguish fresh, frozen, canned but excluded potatoes, legumes and vegetable soups)	Incident non-fatal MI Diagnosis ICD9 410.0 by WHO criteria	Nesults OR (95%CI) for initial non-fatal AMI according to intake of vegetables All subjects (n=4054) Vegetables <7.5 vs ≥7.5 portions/ wk	Considering most CVD risk factors, the risk of onset of heart disease is: • increased by ≈26% with consuming <7.5 portions per week of vegetables (significant) • ≈ 35% for those with, and ≈ 29% for those without family history of heart disease (both significant) • not differently affected by vegetable intake for people with and without a family history (statistically) Issues: Unsure of size of one portion therefore difficult to describe magnitude of effect Fatty acids not considered Quality: B

Appendix 4: Fruits, Vegetables and CHD – Meta-analysis

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Anderson et al., 2000	meta- analysis	7 studies (vegetables) 8 studies (fruits) Wolk et al 1999 Campbell et al 1998 Pietnen et al 1996 Rimm et al 1996 Knekt et al 1994 Fehily et al 1993 Gramenzi et al 1993 McGee et al 1984 Kahn et al 1984	studies from 1984- 1999	consumption of fruits, vegetables (unsure what units – guessing quintiles)	CHD risk CHD risk or mortality, CAD, IHD	 Pooled Relative Risks (95%CI) Vegetables 0.78 (0.39 – 0.89) (primary adjusted) 0.77 (0.70 – 0.86) (secondary adjusted) Fruits 0.85 (0.74 – 0.98) (primary adjusted) 0.86 (0.77 – 0.96) (secondary adjusted) Primary adjustments: age, energy, other dietary factors (protein, various micronutrients incl vit B6), smoking Secondary: vit B6, gender, smoking, BMI, alcohol, family history, BP or hypertension, , cholesterol or hx heart disease, physical activity HRT or menopausal status, dietary factors, supplement use, education, use of aspirin 	 Risk of CHD (or related diseases): Is reduced ≈20% with a high intake of vegetables (significant) Is reduced ≈15% with a high intake of fruits (significant) is shown to be reduced by a similar amount whether studies adjusted only for age, energy, smoking and 'other dietary factors' or also adjusted for use of supplements, family history, presence of many traditional coronary risks, physical activity, menopausal status, education, or use of aspirin. Issues: Pooled RR is based on risks in the upper vs lower categories of intake, which are not quantified. Notably, quintiles reflect actual intakes achieved by segments of the populations studied, which were largely from the U.S and Europe, and therefore are comparable to achievable levels in the Australian/ New Zealand diet.

01	D t	De Calendaria	Appenal					0
Study	Design	Participants	Duration	Dietary Measures	Outcome	Results		Comments
Obarzanek	RCT	459 adults <u>> 22</u>	8 wk	3 diets:	Plasma TC,	Change in blood lipids from		Compared with controls, people with high BP
et al, 2001	Single-blinded	y high BP no HT	intervention	1) 'control', 3) F&V	LDL, HDL,	F&V diet group after interv		who followed a diet with an increase in fruit (3
	Not clinical	medication	3wk run in		trygliceride		oids (mmol/L)	serves daily) and vegetable (1 serve daily)
United	setting	(exclusion: very	(control	F&V diet: 5.2	s, TC:HDL,		0.23 – 0.04)	content for 8 weeks:
States		high cholesterol)	diet)	servings/d fruit and	LDL:HDL).17 – 0.07)	 had slightly greater reductions (0.03 to
DASH				juices, 3.0 servings			0.04 – 0.03)	0.19) in TC, HDL, LDL, and LDL:HDL
		146 -		veg	Used		.19 – 0.002)	ratio in (men) (only TC significant &
Biomarker		intervention			controlled		0.29 - 0.02)	LDL:HDL ratio borderline significant)
Study #1				DASH diet:	storage	Δ LDL:HDL -0.10 (-0	0.23 – 0.04)	 had slightly lesser reductions 0.01-0.05
		recruited from 4		also high in fruits	and			in TC, HDL, LDL, and LDL:HDL ratio
		centres;		5.6 sves and	processing	Change in blood lipids fror		(women) (none significant)
		participation		vegetables 5.2 but	procedures	F&V diet group after interv		 had slightly greater reductions in TAG
		rates not		also uses low fat			Change in blood	≈0.1mmol/L <i>(men & women</i>) (not
		reported		dairy products,			lipids (mmol/L)	significant)
				whole grains,		Δ TC women	0.03(-0.16-0.22)	 had greater reductions in TC:HDL ratio
				poultry, fish nuts,		Δ TC men	-0.18 (-0.36 – 0.00) ^a	$(\approx 0.2$ mmol/L, significant (men)) (≈ 0.04
				and has less fats,		Δ TC 'higher baseline'	-0.12 (-0.29 - 0.05)	mmol/L, significant (women))
				red meat, sweets,		Δ TC 'lower baseline'	-0.01 (-0.21 – 0.18)	
				sugary beverages		Δ LDL women	0.05 (-0.12 – 0.23)	Subgroup
						Δ LDL men	-0.12 (-0.29 – 0.05)	Data suggest any effect might be larger for men
				Control Diet: 1.6		Δ LDL 'higher baseline'	-0.01 (-0.16 – 0.15)	than women.
				servings/d fruit and		Δ LDL 'lower baseline'	-0.080.25 - 0.10)	Data suggest effect may vary with baseline
				juices, 2.0 serves		Δ HDL women	0.01 (-0.04 - 0.07)	levels, but not consistently across parameters
				veg		Δ HDL men	-0.03 (-0.08 – 0.02)	
				F&V diet otherwise		Δ HDL 'higher baseline'	0.03 (-0.02 - 0.08)	Issues:
				similar to controls		Δ HDL 'lower baseline'	-0.04 (-0.09 - 0.01)	Fruit and Vegetable intervention diet NOT
				(same		Δ TAG women	-0.10 (-0.24 – 0.04)	primary hypothesis
				macronutrients)		Δ TAG men	-0.07 (-0.20 – 0.06)	Vegetable content of the intervention diet was
				however also		Δ TAG 'higher baseline'	-0.02 (-0.15 – 0.12)	quite low, and was minimally different from the
				slightly extra grains		Δ TAG 'lower baseline'	-0.15 (-0.290.02) ^b	control diet.
				and less sucrose		Δ TC:HDL women	-0.04 (-0.26 – 0.19)	Fruit included juices but unsure how much was
				than the control		Δ TC:HDL men	-0.23 (-0.440.01) ^b	juice, how much whole fruit
				diet.		Δ LDL:HDL women	0.02(-0.24 - 0.04)	intervention group higher proportion smokers
						Δ LDL:HDL men	-0.19 (-0.39 – 0.00) ^b	(\approx 7%) lower proportion drink alcohol (\approx 11%)
								than control group
				Food prepared by		^a p=0.053 ^b p<0.05		
				research team,		controlled for race, sex and		Quality rating: B
				consumed at home		adjustment or stratification	l	
L	1	1						1

Johnson et al (1996) Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labelled water method in young children J Am Diet Ass 96:

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results Comments
Broekmans et	RCT	n=48 healthy	Sept	2 diets:	Serum	Difference between high and low group in change in serum Compared with controls consuming only
al., 2001		adults 40-60y	1997 to	1/ low in fruit and	triglycerides,	lipids after intervention (post – pre) 100g of fruits and vegetables daily,
,		with low usual	Oct 1997	vegetables (100g/d	TČ, HDL,	Δ from baseline Δ Δ habitually low vegetable and fruit
Netherlands		fruit and veg		veg, 0mL/d juice)	LDL; systolic	(high – low) (low) (high) consumers who consumed a diet high in
		intake <250g/d,	4 week	2/ 'high' in	BP	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Biomarker		and not taking	diet	vegetables & fruit		HDL $-0.1(-0.2 - 0.02)$ n.s -0.5 ± 0.5 -0.7 ± 0.7 +0.1 $-0.2 + 0.02$ had non-significantly greater
Study #2		supplements or	period	(500g/d plus 200	LDL was	LDL $-0.2 (-0.4 - 0.1)$ n.s $0.3\pm 0.5^*$ $-0.5\pm 0.6^*$ reductions in all lipids (<0.2mmol/L
		vitamins	(no run	ml/d juice)	calculated.	LDL/HDL -0.03 (-0.3-0.3) n.s 0.02±0.6 -0.1±0.6 • had similar reductions in systolic
			in)			SBP 2.8 (-2.6 - 8.1) n.s -7.7±8.4* -5.8±11.2* (2.8mmHg) and diastolic
		volunteers		Evening meal	Used	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		recruited		consumed on-site,	controlled	Both intervention and control groups had
		through		rest taken home	storage &	Reported as mean (95% CI) and means <u>+</u> standard reductions from baseline in:
		newspaper ad			processing	deviation • in systolic and diastolic BP
		1 non complian		Diet controlled for	procedures	Note: all but HDL: LDL ratio and TAG were significantly (≈5mmHg), TC, LDL, and HDL (ranging from 0.1 to 0.7 mmol/l.)
		1 non-complier excluded from		energy, fat (total and fatty acid		
		analysis		composition),		(Significant)
		allalysis		protein and		• TAG and in LDL/HDL (not significant)
		23 'low' group		carbohydrates.		groups equal for age, gender, smoking, baseline fruit and significant) vegetables, body weight, BMI, height
		24 'high' group		(≈30%E from fat,		00% nower to detect change of
				≈<15%E from		90% power to detect change of Issues: 0.45 mmol/L TC, 9.4 mmHG systolic pressure Study had insufficient power to detect the
				saturated fats,		observed difference in TC between the
				≈15%E from		For 11MJ diet, fibre contents were high in both intervention groups, or systolic BP. LDL calculated, no
				protein, ≈55%E		and control groups. Fibre contents of 'low' diet: 47.9 g/d measured leading to some potential
				from CHO for both		(low fruit and vegetable diet) 56.2 g/d (high fruit and misclassification bias. Monitored intakes
				diets.)		vegetable diet) suggested good compliance with diets.
						Intervention was short and lacked a run in
				Both diets		period. Large significant metabolic
				contained 47.9 and		improvements from baseline in both
				56.2g of fibre daily		intervention and control groups may be
				 more than 		due to both intervention and control diets
				recommendations		being improvements over baseline diets
				in Australia & New		(meeting macronutrient recommendations
				Zealand and		and having a high fibre content) and may
				typical population		mask any additional effect of vegetables
				intake in the Netherlands		above other dietary components. The very
				(25.2g/day in the		high fibre content of both diets negates the
				Seven Countries		ability of the study to detect any effect of
				study) [102]		fruits and vegetables attributable to their
				Study/[IUZ]		fibre content.
		<u> </u>	L			Quality Rating: C

Appendix 5 cont'd: Fruits, Vegetables and CHD Biomarkers – Intervention Studie	S
--	---

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results							Comments
Freese et	RCT	n=77	6 week	4 treatment diets	Plasma TC,	Change fro	m baseline in	i plasma lipid	s, apolipoprot	teins, and oxi	dation a	after	No significant differences
al., 2002		healthy	interventi	(1a,1b,2a,2b)	HDL, LDL,	interventior	1						among the four treatment
		men &	on (no		Trigly-			ruit, berries		ruit, berries		Control	groups in all markers of lipids
Bio-		women 19-	run in)	1) high linoleic acid	cerides,	ΔTC a	Linoleic	Oleic 0.02 ± 0.59	Linoleic -0.28 ± 0.53	Oleic 0.04 ± 0.69	р 0.18	-0.05 ±0.52	and peroxidation except LDL
marker		52y and 19		or 2) high oleic	LDL		0.11 ± 0.49 -0.04 ±0.19	0.02 ± 0.59 -0.09 ± 0.19	-0.28 ± 0.53 -0.11 ± 0.21	0.04 ± 0.69 -0.06 ±0.17	0.18	-0.05 ± 0.52 0.00 ± 0.11	max.
Study #3		healthy		acid	oxidation,	ΔLDL ^a	0.13 ±0.43	-0.11 ± 0.57	-0.19 ± 0.48	0.14 ± 0.66	0.18	-0.06 ±0.56	
		volunteers			LCAT	ΔTAG^{a}	0.04 ± 0.31	-0.01 ± 0.26	0.04 ± 0.49	-0.07 ± 0.28	0.75	0.02 ± 0.53	Differences in changes from
		22-50y		a) Low or b) high	activity,	ΔΑΡΟ-Α ^b ΔΑΡΟ-Β ^b	0.02 ± 0.20 0.07 ± 0.11	-0.05 ± 0.19 0.02 ± 0.15	-0.05 ± 0.19 0.00 ± 0.11	0.01±0.21 -0.00 ± 0.09	0.61 0.22	0.10 ± 0.17 -0.00 ±0.09	baseline between those
				in vegetables	APO-A,	∆APO-B° ∆LCAT°	4.4 ± 10.2	0.02 ± 0.15 3.4 ± 13.1	0.00 ± 0.11 1.5 ±12.9	-0.00 ± 0.09 3.6 ± 9.3	0.22	-0.00 ± 0.09 -1.0 ± 16.3	following high and low F&V
		Volunteer		(167g vs 440g),	APO-B	∆TBARS ^d	0.21 ± 0.35	0.16 ± 0.37	-0.16 ± 0.79	0.17 ± 0.42	0.41	-0.25 ±0.37	diets (within fat types) were
		staff and		berries (0g vs		∆LDLlag ^e	9.9± 40.9	12.8 ± 40.4	1.7 ± 19.5	24.5 ±51.5	0.32	9.1 ±40.2	mostly very small. Largest
		students of		166g), & fruits (54g	Used	∆LDLmax ^f	-0.2 ± 17.6	-4.8 ± 18.3	8.9 ± 17.5	-7.8 ± 21.1	0.046	-6.4 ±17.1	differences were:
		university;		vs 204g)	controlled								 0.88 mmol/ L for TC,
		randomly			storage								HDL, LDL, & TAG.
		allocated to		1 control diet (self-	and				ns <u>+</u> standaro	d deviations			 0.07g/L for
		treatment		selected;	processing			dl, LDL, Tag					apolipooproteins
		groups		instructed to keep	procedures	b APO-A &	APO B apoli	poproteins A	and B in g/L				 11 minutes in LDL
		(stratified		as per normal)			of lipid peroxi						lag phase
		by sex);		baseline intake	LDL	c TBARS (p	olasma): (Thi	iobarbiutric ai	icd-reactive s	ubstances in	plasma	l)	 3 nmol/ mgLDL/ min
		controls		287 <u>+</u> 149g	calculated		eide in μ mol/						LDLmax
		recruited		vegetables, 257 <u>+</u>	(not	d LDL lag -	 LDL lag pha 	se in minutes	s (measure of	susceptibility	/ of LDL	_ to	(significant). (High
		separately		224 g fruit, 35 <u>+</u> 49	measured)	oxidation)							linoleic acid & high
				g berries					tion in nmol/ r				F&V diet was
		Blinded for							uced oxidatio		ater val	ues reflect	associated with most
		fat type but				a faster oxi	dation of LDL	., that is a les	ser antioxidai	nt capacity)			oxidisability of LDL
		not fruits											(LDLmax)
		and											Control group had no large
		vegetables											significant changes in absence
		Distance							s with approx				of study intervention – no
		Diet groups 1a n=13							r in control gr				period effect.
							ner in oleic ac	id low vegeta	able group an	d control grou	лр (35-4	40g vs 12-	
		1b n=15 2a n=15				15g).							Issues:
		2b n=15											Short study without run in on
									good complia				volunteers with baseline diets
		control							est control gr	oup did not c	hange	truit and	relatively high in fruits,
		n=15				vegetable i	ntake from ba	aseline.					vegetables and berries
													(maybe health conscious and
													non generalisable).
													Baseline diets similar but not
													equal and no run-in.
													Not blinded.
													Quality rating: B

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results		Comments
John et al 2002 United Kingdom Biomarker Study #4	RCT	n=690 healthy adults 25-64y no CVD (except hyper-tension), no GI disease, cancer, serious psychiatric disorder, hyper- cholesterolaemia, recent traumatic event, unable to give informed consent Participants randomly selected from 2 GP lists, random allocation to intervention (smoking stratified) Intervention n=344 Control n=346	6-month	Intervention: Behavioural intervention aimed to increase fruit and vegetable intake (no other changes suggested) Control: same measures taken and visits but no diet intervention DINE FFQ modified to assess fruit and vegetables	Systolic and diastolic BP, Total Cholesterol BP (mean of 2 readings measured by electronic sphygmomanometer, taken by research nurses) at baseline and 6 month follow- up visit Total cholesterol (plasma) non-fasting sample, used controlled storage and processing procedures, (Beckman Syncrhon clinical chemistry analyser)	$\begin{array}{c} \mbox{Change from baseline in interaction of groups in intakes and markers} \\ \hline \mbox{Change from baseline in intakes and markers} \\ \hline \mbox{Change from baseline in intakes and markers} \\ \hline Change from baseline in the baseline of the baselin$	d clinical ge from Baseline 1.4 (1.7) 0.1 (1.3) .3 (1.1 – 1.6) 1.4 (1.2- 1.6) 1.4 (1.2- 1.6) .4 (1.2- 1.6) .1.4 (14.6) 4 (-1.3 – -5.5) 0 (-2.0 – -6.0) .1.6 (8.7) .0.3 (8.7) .4 (-0.12.7) 5 (-0.2 – -2.7) 0.018 (0.87) 0.036 (0.56) 6 (-0.092 – 0.128) 0 (-0.097 – 0.116)	 After intervention to increase fruit and vegetable intake, the intake of the intervention group was approximately 100g /d higher than the control group. This resulted in: A significantly greater reduction in BP in the intervention group (≈ 4mmHg systolic, ≈ 1.5mmHg diastolic). Virtually no change in total cholesterol (0.01mmol/L, non-significant) Cholesterol samples were non-fasting, leaving a chance for misclassification bias. Body weight constant, and unchanged cholesterol suggests results not due to participants lowering their fat intake Issues: Used non-fasting cholesterol which leaves greater chance for misclassification (bias towards the null) Quality Rating: A – BP C - cholesterol

						d CHD Biomarkers – Intervention Studies	
Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Conlin	RCT	n=133 adults	8 week	3 diets:	Systolic & Diastolic	Relative Risk for hypertension and Isolated Systolic	Considering most CVD risks, compared with
et al.,	Single-	22y with Stage	intervention	1) 'control', 2)	BP	Hypertension after the 8 week intervention diet	people following an otherwise equal control
2000	blinded	I hypertension,	diet (3	'DASH', 3) F&V		RR (95%CI) RR (95%CI) hypertension ISH	diet, people with Stage I hypertension who
	Not clinical	no poorly	week run-		Random-zero	Control 1 (ref) 1 (ref)	followed a diet with an additional 3 serves of
United	setting	controlled	in)	Control Diet: 1.9	sphygmomanomet	F & V 0.72 (0.52 – 0.97)* 0.71 (0.46 – 1.09) n.s.	fruit/ juice and 1 serve of vegetables:
States	0 "	diabetes/		servings/d fruit and	er by trained	DASH 0.39 (0.23 – 0.65)*** 0.29 (0.13 – 0.64)***	 had ≈7mmHg greater reduction in
DAOU	Quality	hyperlipidemia,		juices, 2.0 serves	certified staff,		systolic BP (significant) after the 8
DASH	issues:	no pregnancy/		veg	paired	Reduction in BP after three eight-week intervention	week diet period
Study	Overall OK,	lactation, no			measurements	diets	
	intention to	supplements/		F&V diet: 5.2	taken weekly in	Δ SBP Δ DBP	BP (significant) after the 8 week diet
Bio-	treat	antacids, no renal		servings/d fruit and	run-in and	F & V ^a -7.2 (-10.9 to -3.6)*** -2.8 (-5.1 to -0.6)*	period
marker		insufficiency, no		juices, 3.0 servings veg – compared	intervention times	F & V ^a -7.2 (-10.9 t0 -3.6) -2.6 (-5.1 t0 -0.6) minus control	
Study		cardio-vascular		with control slightly	Baseline: average	F & V ^b -7.0 (-10.7 to -3.4) *** -3 (-5.3 to -0.7)**	hypertension (significant) and ISH (not
#5		event in last 6		extra grains , less	of screening and 4	minus control DASH -4.1 (-8.0 to -0.2)* -2.6 (-5.0 to -0.2)*	significant) after the 8 week diet period
π 3		months, BMI		sucrose but	paired	DASH -4.1 (-8.0 to -0.2)* -2.6 (-5.0 to -0.2)* minus F& V	These who followed a bigh fruit and
		<35, etOH <14		macronutrients as	measurements at	DASH vs -4.5 (-8.4 to -0.7)* -2.9 (-5.3 to -0.5)*	Those who followed a high fruit and
		drinks/wk		per control	run-in.	minus F & V	vegetable diet including 2 extra serves of vegetables (DASH):
		recruited from 4		DASH diet: also	End: average of 5	n.s. p <u>></u> 0.05, * p<0.05, ** p<0.01, ***p<0.001	 had greater reductions in systolic (≈5mmHg) and diastolic BP (≈3mmHg)
		centres by mass		high in fruits 5.6	pairs taken in last	a adjusted for clinical centre	(\approx smmg) and diastolic BP (\approx smmg) (both significant) than people following
		mailing and		serves and	13 days of	^b adjusted as a, also for gender, race, age, etOH,	the fruits and vegetables diet
		community		vegetables 5.2 but	intervention	baseline SBP	 had ≈60% reduction in risk of
		screening (non-		also uses low fat			
		random);		dairy products,	Control of		hypertension and \approx 70% reduction in right of ISH (both significant) often the
		deliberate aim to		whole grains,	hypertension: SBP		risk of ISH (both significant) after the trial relative to the control group
		over-recruit		poultry, fish nuts,	<140 mmHg and		that relative to the control group
		African		and has less fats,	DBP <90 mmHg.		Issues:
		American		red meat, sweets,			volunteers
		participants		sugary beverages	Control of Isolated		deliberate overinclusion of African Americans
					Systolic		F&V diet NOT the primary hypothesis (power
				Run in diet =	Hyptertension:		calculations based on DASH diet
				control diet	SBP <140 mmHg		expectations)
							Other dietary modifications, and/or a greater
				Food prepared by			'dose' of vegetables can achieve even
				research team,			greater reductions in BP and risk of
				consumed at home			hypertension, and isolated systolic
							hypertension
							Very low intervention intensity (1 serve
							vegetable increase)
							Quality: B

StudyDesignMooreMulti-centreet al.,randomised	Participants 72 DASH	Duration	Dietary Measures	Outcome	Results Comments
		1 ()	0 11 1		
hot al randomicod		8-week	3 diets:	BP (systolic, diastolic	Change in BP from baseline after 8 week intervention diet Participants with baseline systolic
	participants who	diet	1) 'control',	& 24h ambulatory)	DASH diet F&V diet Control diet hypertension, after consuming a (n=23) (n=24) (n=25) diet high in fruits and vegetables for
2001 clinical trial	had Isolated	period	2) 'DASH'		
not blinded	Systolic	(3 week	3) 'F&V'	Sphyngomanometer -	$A DBP = -35 + 63^{**} - 13 + 2ns = 10 + 2ns$ 0 weeks.
United	Hypertension	run in)	Control Diet: 1.6	common protocol	△ 24h SBP -9.4 * -4.1 n.s0.6 n.s. • had reductions of systolic
States	SBP 140 to 159		servings/d fruit and		\triangle 24h DBP n.s. n.s n.s. and diastolic BP \approx 4 and
Quality –	mmHg (47 \pm		juices, 2.0 serves	Baseline: average of	≤140mmHg SPB post 18 of 23 12 of 24 6 of 25 (noither significant)
DASH generally OK	22y)		veg	3 measures taken	(Teitier significant).
study	1.16.14		DAOLU	during last 2 weeks	Had a greater reduction in
Dia	recruited from 4		DASH diet:	of run-in	(Full details not given) SBP (≈3.2mmHg) than
Bio-	centres; non-		also high in fruits	Deate average	n.s not significant (p>0.05) * p<0.05 participants following the
marker Study	random recruitment from		5.6 sves and	Post: average	Control diet (not significant).
#6	bulk mailout and		vegetables 5.2 but also uses low fat	measures taken on of 5 of last 13 days of	Baseline (end of run- in) values were 147 ± 5 (DASH) 146 ± 5 (F&V) 146 ± 6 (control) Had a greater reduction in DBR (-2.3mmHa) then
#0	screening;		dairy products,	intervention diet.	$DDF (\approx 2.31111) Pg (1a)$
	randomised to		whole grains,		participants control diet (not
	interventions		poultry, fish nuts,	Ambulatory BP by	significant).
	Interventions		and has less fats,	Spacelabs monitor	 had normal systolic BP
			red meat, sweets,	(end of run in and	(<140mmHg) [50% of
			sugary beverages	end of intervention)	participants]
			F&V diet: 5.2 servings/d fruit and juices, 3.0 servings veg – compared with control slightly extra grains , less sucrose but macronutrients as per control Food prepared by research team, consumed at home		The DASH diet which included other dietary modifications and 2 serves more vegetables than the fruit and vegetable diet significantly improved all measures of BP from baseline, and relative to the control group.Issues: volunteers no blinding small vegetable content of the high fruit and vegetable diet (inadequate dose?) cannot separate the effect of the additional vegetable in DASH diet from other dietary modifications Fruit and vegetable diet NOT primary hypothesisQuality rating B:

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Appel et	RCT	n=118 adults <u>></u> 22y, no	8 week	3 diets	serum	Change in homocysteine:	Among adults, after an 8 week dietary
al, 2000	feeding	hypertensive medication,	intervention	1/ Control (high fat, 1.9 sv fruit	homocysteine	Δ homocysteine	intervention, the change in plasma
	study	normal BP, no poorly	(3 week run	(incl. juices, 2.1 sv vegetables)		(μmol/L) Control +0.46 (-0.04 – +0.96)	homocysteine levels:
United		controlled diabetes, no	in)		HPLC (8%	Fruits & veg +0.21 (-0.27 - +0.69)	 a slight increase ≈0.5µmol
States	single blinded	hyperlipidemia, no vitamin/ mineral supplements, no		2/ fruits & vegetables diet (as control 5.6 sv fruit incl juices, 3.3	between run coefficient)	Combination -0.34 (-0.84 – +0.16)	from baseline (not significant) in
DASH trial	billided	medications that affect		sv vegetables)	coefficient)		those consuming the high fat control diet was
DASITUIAI	quality	BP, GFR <50 ml/min		sv vegetables)	controlled	Compared with the control diet the	 a slight increase from
Bio-	issues:			3/ combination diet (lower fat,	collection and	combination diet produced a	baseline ($\approx 0.2 \mu$ mol/L) (not
marker		recruited from 4 centres;		lower saturated fat, 5.3 sv fruit	storage	significantly different change in	significant), that was less than
Study #7		non-random recruitment ;		incl. juices, 5.2 sv vegetables)	procedures	homocysteine [-0.8 μmol/L (-1.51 -= -0.1)] but the	the increase in the control group
		randomised to				fruit and vegetable diet did not	(by 0.25µmol/L) in those
		interventions		run in diet = control diet		[-0.25 μmol/L (-0.94 - +0.44)].	following a diet similar to the
				1 meal at centre per weekday rest			control but with an additional
				taken home			serve of vegetables and 3
							serves of fruit/ juice
							 was a ≈0.3µmol/L reduction from baseline levels (non-
							significant), that was 0.8 µmol/L
							different (statistically significant)
							from the increase in the control
							group among those who
							followed a diet lower in fat and
							saturated fat, and with an
							additional 3 serves of vegetables
							and 3 serves fruit/ juice
							lssues:
							Use of volunteers
							F&V diet NOT the primary hypothesis
							Intervention diet increased vegetable
							content by small amount (1 serve)
							"all else being equal" violated for
							combination diet - cannot distinguish
							between effect of extra vegetable
							content, reduction in fat and reduction
							in saturated fat
							Quality rating: C

	1			onit u. I fuits, vegetables and crib i			
Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Silaste et al.,	crossover	n=37 healthy	2 week	Diets:	plasma total	Mean plasma homocysteine after	Healthy volunteers had
2003	intervention	female	baseline, 5	Baseline & Washout 'usual at home diet'	homocysteine	each intervention period	significantly lower plasma
		volunteers	week			Homocysteine	homocysteine (1.1 μ mol/ L,
Finland		(workers at	interventions,	Low folate/ fruit and vegetable	Overnight fasting blood	(µmol/ L) Baseline 8.1 (1.9)	13%) after following a diet
		University	3 week	<200g dietary cholesterol, sat. fat 10%	samples at baseline,	Low fr/veg/folate 8.0 (1.4)	high in folate-rich fruits,
Biomarker		Hospital of	washout	energy, fatty acid controlled, one serve	end of washout and	Washout 7.8 (1.5)	vegetables and berries than
Study #8		Oulu)		fresh vegetables/ fruit/ juice [total 200 µg/	intervention periods.	High fr/veg/folate 6.9 (1.5)*	when following a diet low in
				d folate].	Used controlled		folate-rich fruits, vegetables
		Eligibility: BMI			storage/ processing		and berries.
		20-29, no GI/ renal/ hepatic		High folate/ fruit/ vegetable	procedures.	* different from low fr/veg/folate	laguagi
		disease, no		As the low fruit/vegetable/ folate intervention diet in terms of fats and	Total Homocysteine by	diet p<0.001	Issues:
		alcoholism, no		energy, but with 60g fresh paprika, 400-	immunoflourometric		Although baseline and washout homocysteine
		use of		500g raw or steamed fresh vegetables, 2	IMX method (interassay		measures not statistically
		supplements, no		serves fruit/ juice, plus berries (quantity	CV 3.2%, Nordic quality		different, the washout
		food allergy,		not reported) [total 600 μ g/ d folate]	assurance system		period was too short for
		normal lipids			(mean bias for seven		some other markers used.
		and glucose, not		Food prepared at hospital kitchen, food	sera -3.5%)		
		pregnant/		taken home for weekend. Compliance	,		Decreases in plasma
		lactating		observed for lunches and by self-report –			homocysteine may have
				no major non-compliance noted. Body			been slightly greater if the
				weight maintained by nutritionist adjusting			washout period were longer.
				energy to daily body weight.			
							Quality Rating: A

Appendix 6: Fruits, Vegetablse and CHD Biomarkers – Observational Studies (Prospective Cohort)

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results			(Comments
Miura,	cohort	2107 men	annual	Intake of	BP (systolic,	Annual change	e in systol	ic BP ove	r 7 years a	across cate	egories of	After adjustment for most risk factors
et al.,	study	aged 40-55y	follow up	vegetables, fruits	diastolic)	fruit and veget	able intak		•			for hypertension and other foods,
(2004)	-	at baseline	for 7y		,		Model 1	Model 2	Model 3	Model 4	Model 5	compared with those consuming less
	quality not	employed at		2x Burke's diet	mercury		∆mmHg	∆mmHg	∆mmHg	∆mmHg	∆mmHg	than 0.4 serves per day, annual
United	sure	least 2y by	Baseline	history by 2	sphygmomanometer,	Veg (sv/d)	/ yr	/ yr	/ yr	/ yr	/ yr	increase in BP was:
States		Chicago	Oct 1957	nutritionists 1 year	trained clinicians	<0.38	ref	ref	ref	ref	ref	• 0.4mmHg less (systolic)
	sampling	Western	– Dec	apart. Mean of		0.38- 1.125	-0.46**	-0.48**	-0.40**	-0.40**	-0.29	(significant) and 0.17 mmHg
Chicago	good,	Electric	1958	both values used.		>1.125	-0.33	-0.38	-0.24	-0.28	0.08	less (diastolic) (significant) for
Western	methods/	Company,				Fruit (sv/d) <0.38	ref	ref	ref	ref	ref	those consuming 0.4 - 1.1
Electric	measures	Illinois 1710		195 specific food		0.38- 1.125	-0.44***	-0.44 ***	-0.35**	-0.32*	-0.29*	serves of vegetables
Study	good.	w/ sufficient		cross-check		>1.125	-0.40*	-0.42*	-0.28	-0.27	-0.22	(significant)
	However	data for										 0.28mmHg less(systolic) (not
Biomar	lack of	analysis				Annual chang	e in diast	olic BP ov	er 7 years	across ca	ategories	significant) and 0.22mmHg
ker	control for					of fruit and veg	getable in					less (diastolic) for those
Study	Na⁺ intake	67%					Model 1	Model 2	Model 3	Model 4	Model 5	consuming more than 1.1
#9	important	participation					∆mmHg / yr	∆mmHg /yr	∆mmHg /yr	∆mmHg /yr	∆mmHg /yr	serve vegetables (not
	(also Mg⁺⁺	rate				Veg (sv/d)	/ yı	/ yi	7 yi	/ yi	/ yi	significant)
	K⁺, fibre)					<0.38	ref	ref	ref	ref	ref	 0.32mmHg less (systolic)
	lack of					0.38-1.125	-0.18*	-0.19*	-0.17*	-0.17*	-0.11	(significant) and 0.14 mmHg
	fineness in					>1.125	-0.21	-0.25*	-0.22	-0.22	-0.06	less (diastolic) (not significant)
	intake					Fruit (sv/d)						for those consuming 0.4 – 1.1
	categories					<0.38	ref	ref	ref	ref	ref	serves of fruits
						0.38- 1.125 >1.125	-0.17* -0.25*	-0.18* -0.25*	-0.16* -0.24*	-0.14 -0.22*	-0.13 -0.19	• 0.27mmHg less (systolic) (not
						×1.125	-0.23	-0.23	-0.24	-0.22	-0.19	significant) and 0.22 mmHg
						***0 001 **		*				less (diastolic) (significant) for
						*** p<0.001 **	p<0.01	p<0.05				those consuming more than
						Madal1, adjus	had far an	•				1.1 serves of fruits.
						Model1: adjus Model 2: adjus			t por voor			laguagi
						Model 3: adjus					00 por	Issues:
						day, alcohol in				n, cigarett	es per	Adjustment for nutrients reduced
						Model 4: as 3				voqotable	oc fich	observed relationships, indicating either confounding by some factors
						beef-lamb-vea				vegelable	55, 11511,	(eg fats) or that some of the protective
						Model 5: adjus	i, puik, pu	ndol / alec	nutrient i	ntakos (Cl	н∩	relationship is related to the vitamins
						protein, sat. fa						which were included in the model.
						beta-carotene,				юп, D1, D	2 00 11 0	
							1001101					Unmeasured dietary factors
						No adjustment	for Na⁺ i	ntake impo	ortant (also	n Ma++ Ca	++ K+ fihr≏	(especially salt).
						which may be			situin (ulo	o mg oa	1, 1010	(copolially saily.
							portant	7				Quality rating: C
L		1	1	1	1							adding rating. o

Appendix 7: Fruits, Vegetables and CHD Biomarkers – Cross-sectional Studies

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Beitz et	population	n= 1628	Oct	Vitamin C intake	BP (systolic &	Increase in systolic BP by intake of Vit C. and fruits and vegetables	After considering most CVD risk
al., 2003	based	women &	1997-	(dietary & total),	diastolic)	among women	factors, BP was:
	cross-	n=1340 men	Mar	fruit & vegetable		B (std. error) Standard	• \approx 5mmHg lower (systolic)
Germany	sectional	aged 18-79y,	1999	intake	Mercury	Dietary Vit C. (g/d) (model 1) -7.44 (4.71) n.s0.03	with each additional kg/d
German				O a manufacture of	sphygmoman	Total Vit C. (g/d) (model 2) -4.28 (2.61) n.s0.03	fruits and vegetables
Nutrition		response rate 61.4%		Computerised Dietary History of	ometer 3	Fruit & veg (kg/d) (model 3) -5.38 (1.55)*** -0.07	(significant) for women
Survey		01.4%		usual diet	measurement s, average of		 reported as "not significant"
Bio-		representative		(by trained	last two used	Increase in systolic BP by intake of Vit C. and fruits and vegetables	 for men (systolic) reported as "not significant"
marker		sample with		nutritionists) plus		Women Men	 reported as "not significant" in either gender (diastolic)
Study #10		complete data		interview re:		B (std. error) Standardized B (std. error) Standardized B B	
				supplements		Hi F&V, hi vit C -2.33 (0.89)** -0.06 1.82 (0.94) n.s. 0.05	Compared with those consuming
		Exclusions:				Hi F&V, low vit C -2.99 (1.37)* -0.05 -1.30 (1.44) n.s0.02 Low F&V, hi vit C 0.71 (1.02) n.s. 0.02 -0.74 (1.12) n.s0.02	less than 600g/d of fruits and
		current or hx		validated against		Low F&V, low vit C ref ref	vegetables and less than 0.15 g/d
		hypertension,		3d record and 24hr			vit. C, those consuming 600g or
		medications which raise or		recall. Adjusted Spearman's		Increase in diastolic BP by intake of Vit C. and fruits and vegetables	more:
		lower BP,		correlations w/ 3d		Women Men B (se) Standardized B (se) Standardized	• systolic BP 2 or 3 mmHg
		nursing		record: energy		В В	lower (significant) for women or 1 or 2 mmHg
		mothers		0.74, fibre 0.69,		Hi F&V, hi vit C -0.34 (0.56) n.s. -0.01 0.19 (0.64) n.s. 0.01 Hi F&V, low vit C -1.00 (0.86) n.s. -0.03 -1.17 (0.97) n.s. -0.03	lower (not significant) for
				vegetable protein		Low F&V, hi vit C 0.89 (0.65) n.s. 0.03 0.06 (0.75) n.s 0.002. Low F&V, low vit C ref ref	men)
				0.59, carbohydrate			 diastolic BP less by around
				0.67		n.s. p>0.05, *p <u><</u> 0.05, **p <u><</u> 0.01, *** p≤ 0.001	1mmHg (not significant) for
						all models adjusted for age, BMI and smoking status (considered but	men and women with low vit
						did not need to adjust for SEP, smoking, physical activity, alcohol,	C intakes or similar to within
						coffee, vegetarian diet, health-related quality of life issues, region,	half a mmHg (non-
						season, and energy intake	significant) for men and
							women with high vit C intakes
						Fruit and vegetables: hi <u>>600g/d</u> low <600g/d	Intakes
						Total Vitamin C (includes supplements): hi <a>0.15 g/d low < 0.15 g/d	lssues:
						Results for systolic BP (men) and diastolic BP (women, men) by f&v	Some dietary factors were not
						intake, dietary vit. C, total vit. C reported as 'not significant' but not	considered which may relate to
						shown	both f&v intake and BP (fatty acid
							intake, calcium)
						later considered sodium – did not alter results; later did sub-group	
						analyses by smoking status	Quality Rating: B

Definitions: B is the regression coefficient (slope) from the linear regression model. It represents the increase in the outcome variable which occurs with every increase of unit in the independent variable of interest. Standardized B: the increase in the standardized value of the outcome variable which occurs with every increase of one standardized unit in the independent variable of interest.

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results					Comments
Nagata et al.,	Cross	n=294 men	September	Fruit intake g/d,	BP	Correlation between fruit and	vegetabl	e intake	and BP a	among	Correlations between BP
2003	sectional	n=330 women	1996 and	Vegetable intake g/d		men and women	-				and intake of vegetables
			Aug 1997		digital		Syst		Dias		were:
Japan		Sampling:		Semi-quantitative 169-	recorder,		Veg	Fruit	Veg	Fruit	• all weaker than ±0.15
		participants in a		item FFQ	between	Men ª	-0.14*	-0.08	-0.07	0.01	 inverse for men
Biomarker		health check-up			8&9am by	Men ^b	-0.12*	-0.05	-0.05	0.06	(systolic BP
Study #11		program at a general hospital		validated against 3d records	same observer	Premenopausal women a	0.003	-0.10	0.04	-0.10	significant, diastolic
		no data on		Correlation coefficients	00301701	Premenopausal women b	0.002	-0.12	0.06	-0.11	non-significant)
		sampling		with from 0.15 to 0.54 in		Peri-post menopausal women a	0.03	-0.09	-0.01	-0.12	 very nearly zero for women (not
		method,		males and from 0.18 to		Peri-post menopausal women b	0.09	-0.04	0.05	-0.10	significant)
		response to		0.47 in females for							
		survey 97.3%		various nutrients. F&V intake estimates 30-45%		* p<0.05 a) adjusted for age, energy					Correlations between BP
		exclusions: use	е	higher by FFQ than diet		b) adjusted as 'a' also BMI, a	lcohol, sa	alt. seaw	eed		and intake of fruits were:
		of anit-		record.		Potential confounders consid				marital	 all weaker than ±0.15
		hypertensives,		100010.		status, exercise, age at mena					and non significant
		oral		Repeatability: ICCs		_					 negative, (except for with diastolic
		contraceptives,		from 0.46 to 0.78 in men							pressure in men)
		HRT, cancer,		and from 0.36 to 0.67 in							pressure in meny
		angina/ MI,		women Vit C ICC very							Issues:
		diabetes		low in women							Sample representativeness
											uncertain
											Questionable validity of
											dietary exposure
											assessment leaving potential
											for misclassification with
											probable bias towards the
											null
											Quality: P
											Quality: B

Appendix 7 cont'd: Fruits, Vegetables and CHD Biomarkers – Cross-sectional Studies

 Cross- sectional		Baseline 1994- 1999	Usual intake of fruit and veg over last year Semi-quantitative 150 item FFQ Good validity	Arterial BP 2 readings of mercury sphygmo- manometer by trained physician	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	After adjustment for most CVD risk factors, each additional SD of intake of fruits, and of vegetables was associated with: ● ≈0.5mmHg reduction in systolic BP (both significant, linear) ● ≈0.4mmHg reduction in
	Greece.		(Gnardellis et al., 1997)		physical activity ^a also adjusted for olive oil intake 1 SD vegetable intake = 233.0 (men), 236.7 (women) 1 SD fruit intake = 212.6 (men), 212.2 (women)	diastolic BP (both significant, linear) ■ a lesser reduction in BP with vegetable intake after adjustment for olive oil ≈0mmHg (<i>diastolic</i>) to
						lssues: Quality Rating: A

Appendix 7 cont'd : Fruits, Vegetables and CHD Biomarkers - Cross-sectional Studies

NHEFS: National Health and Nutrition Examination Survey Epidemiologic Follow-up Study

dy EPIC: European Prospective investigation into Cancer and Nutrition

Gnardellis C., Trichopoulou, A., Katsouyanni, K., Polychronopoulous, E., Rimm, E.B., (1997) Reproducibility and validity of an extensive semi-quantitative food frequency questionnaire using dietary records and chemical markers among Greek Schoolteachers. Int J Epidemiol 1997; 26(suppl 1):s118-27

Appendix 5 cont'd: Fruits, Vegetables and CHD Biomarkers – Cross-sectional Studies
--

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results			Comments
Djoussé et al.,	Cross-	n=4466 adults		Usual consumption	Serum LDL, HDL:	Adjusted LDL chole			After considering most risk
(2004)	sectional	(enrolled in one		fruits and vegetables	LDL ratio, HDL and	vegetable intakes i			factors for CVD, an intake of
	(multi-centre	of 4 cohort			triglycerides	Intake F& V	LDL Adjusted		5.4 vs 1.4 serves per day was
United States	population	studies)		Semi-quantitative 100-		serves/d Men	Model 1	Model 2	associated with:
	based)			item FFQ (6 fruit items,	Blood samples:	1.4 (0-1.9)	3.36 ± 0.04	3.36 ± 0.04	≈0.2 mmol/L lower LDL
National Heart,		Randomly		11 vegetable items)	fasting samples	2.5(2.0-2.9)	3.35 ± 0.04	3.35 ± 0.04	for men & women
Lung, and	Quality	selected within			taken.	3.4 (3.0 – 3.9) 5.4 (4.0 – 15.2)	3.26 ± 0.04 3.17 ± 0.06	3.26 ± 0.04 3.17 ± 0.06	(significant); dose-
Blood Institute	good	cohorts –		Modified from validated		p for trend	<0.0001	0.0002	response relationships
Family Study		screened, 588		FFQ (Willett et al.)	Used controlled	Women			reduction in HDL: LDL
Diamanlar		'families' chosen			storage and	1.4 (0-1.9)	3.35 ± 0.05	3.36 ± 0.05	ratio of ≈0.2 for men &
Biomarker		randomly, 657			processing	2.5(2.0-2.9) 3.4 (3.0 – 3.9)	3.22 ± 0.04 3.21 ± 0.04	3.23 ± 0.04 3.21 ± 0.04	women (significant);
Study #13		chosen for elevated CAD			procedures	5.4 (4.0 – 15.2)	3.11 ± 0.04	3.11 ± 0.04	dose response
		rates in family				p for trend	<0.0001	<0.0001	relationship
		members							"no significant change"
		mombors				Adjusted HDL:LDL			in HDL (p for
						vegetable intakes i			trend=0.57 (men), 0.97 (women)) or
						Intake F& V serves/d	LDL:HDL Adjusted me Men	eans ± SE (Model 2) Women	triglycerides (p for
						1.4 (0-1.9)	3.21 ± 0.05	2.52 ± 0.05	trend =0.83 (men),
						2.5(2.0-2.9)	3.19 ± 0.05	2.40 ± 0.04	0.60 (women))"
						3.4(3.0-3.9)	3.16 ± 0.05	2.42 ± 0.04	(magnitudes not
						5.4 (4.0 – 15.2) p for trend	3.03 ± 0.05 0.006	2.36 ± 0.04 0.020	reported)
						pior dona	0.000	0.020	 Results unchanged
						All corrected for clu	ustoring		with exclusion of
								red, field centre, risk	baseline CAD,
						group (random v C			diabetes; similar when
						smoking status, die			restricted to 75 th
						diabetes			percentile saturated fat
						Model 2: adjusted a	as model 1 also eo	ducation. physical	intake
	1					activity, intakes of			
						total fat	×1 7	,	Issues:
	1								magnitude of change in HDL
									and triglycerides not reported
	1								
	L								Quality: A

Appendix 7: Fruits, Vegetables and CHD Biomarkers – Cross-sectional Studies

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Lindquist et al.,	Cross-	n=95 children		USDA servings fruit,	Serum total	Increase in lipids with increase in daily fruit and vegetable	After adjustment for some
2000	sectional	6.5 – 13 y,		vegetables per day	cholesterol,	intake	potential confounding
		54 white and 41			triglycerides	Cholesterol Triglycerides	factors, among children:
United States	Quality –	African		3 x 24 hr recalls over 2	(fasting)	(log mmol/L) (log mmol/L)	 serum cholesterol
	used non-	American		weeks (1 weekend day,		β p β p Fruit (log ~servings) -0.019 0.22 -0.008 0.85	had a weak
Biomarker	random			2 weekday)	Used controlled	Vegetable (log ~servings) -0.019 0.22 -0.006 0.65 Vegetable (log ~servings) -0.02 0.60 -0.048 0.64	negative
Study #14	sample, small	Recruited (non-		- Palata di Casa ang sa ka	storage and		associations with
	sample size,	random)		validated for energy by	processing	adjusted for ethnicity, social class, intake of other core foods	intake of fruits
	misclassificati			doubly labelled water	procedures	(added sugar, discretionary fat, dairy, grain)	(non significant)
	on			(Johnson et al., 1996) At group level, mean		(added Sugar, discretionary lat, dairy, grain)	and vegetables
				energy very similar by			(non significant)serum
				both methods. At			triglycerides had
				individual level,			weak negative
				correlation between			associations with
				both measures show			intake of fruits
				low validity (r=0.25,			(non significant)
				p=0.24) limits of			and vegetables
				agreement show 24 hr			(non-significant)
				recalls from 4600 kJ			
				lower to 3400kJ higher			Issues:
				than doubly labelled			Poor validity of dietary
				water method.			exposure assessment
							with potential
							misclassification of
							dietary exposures gives
							probable bias towards
							null.
							Sample is both non-
							random and small
							Quality rating: B

Appendix 7 cont'd: Fruits, Vegetables and CHD Biomarkers – Cross-sectional Studies
--

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Deurenberg-	cross-	n=4723 adults (64%	1998	intake of fruits and	plasma TC, HDL, LDL,	Mean total cholesterol of sex-	Among healthy Singaporean
Yap et al.,	sectional	Chinese, 21% Malays, 15%		vegetables, vegetables	TC:HDL ratio	ethnic groups correlated with	residents:
2001		Indians),			(calculated)	mean vegetable intakes (r=-0.82).	 Intake of vegetables
				159-item FFQ 'usual		Associations with other outcomes	strongly inversely associated
Singapore		Sampling: multistage, with		intake over last month'	used controlled	and associations for fruit not	with total cholesterol.
National		oversampling of Malays and		in language subject	collection, storage and	reported.	 (without adjustments)
Health Survey		Indians		most familiar with,	processing procedures		strong negative correlation (-
1998				sometimes interpreters;		RR of elevated TC (>6.2 mmol/L),	0.82) between group vegetable
		Response rate 64%		frequency per day week	overnight fasting blood	LDL (>4.1 mmol/L), TCHDL >4.4	intake and group total
Biomarker				or month – used visual	samples – same day	mmol/L) and low HDL (<0.9	cholesterol
Study #15				serving size aids	separation and use of	mmol/L) not significantly	 Intake of fruits and
					plasma	associated with quintiles of fruit	vegetables not associated with
				validated		and vegetable intake adjusting for	risk of elevated blood lipids.
					TC (enzymatic method),	age, BMI and WHR. (Actual	
					HDL (homogeneous	estimates not presented).	Issues: mean vegetable intakes very
					enzymatic test), LDL		low (much below Singaporean
					(homogeneous	Typical intakes (servings/ day)	recommendations)
					turbidimetric method)	Vegetables	Diet in the last month may not be the
						1.29 ± 0.79 (F), 1.36 ± 0.90 (M).	most relevant dietary exposure
						Fruits	Actual magnitude of results, and
						1.27 ± 0.99 (F), 1.35 ± 1.09 (M)	many analyses not presented.
							Different primary hypothesis.
							Quality: C

Appendix 7 cont'd: Fruits,	Vegetables and CHD Biomarker	s – Cross-sectional Studies
----------------------------	------------------------------	-----------------------------

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Fornés et al	cross-	n=1045		Intake of fruits, vegetables,	Serum	Increase in serum LDL and HDL with increasing	In Brazilian adults, increasing frequency of
2000	sectional	adult men		beans	HDL, LDL	frequency of consumption of fruits and vegetables	consumption of fruits was associated with:
		and women				(linear model)	 LDL level weakly (r=-0.05) (significant) at
Brazil		20 y+		FFQ (44 Brazilian foods, 7	12h fasting	β (95% CI) for cholesterol mg/dL	the crude level; HDL not associated (not
				response categories from	blood	Fruits Vegetables LDL 1 -5.49 (-9.611.37)** -3.21(-5.610.82)**	significant)
Biomarker		representat		never to once per day)	samples,	LDL 2	 Large significant reduction in LDL
Study #16		ive sample				LDL 3	cholesterol (approx 6mg/dL) when
				assesses diet over last year	storage not	HDL 1 -0.47 (-1.79 – 0.85) -0.13 (-0.88 – 0.62) HDL 2 -0.17 (-1.48 – 1.14) -0.25 (-1.04 - 0.46)	adjusted only for age and gender
					described	HDL 2 $-0.17(-1.48 - 1.14)$ $-0.23(-1.04 - 0.40)$ HDL 3 $-0.13(-1.48 - 1.22)$ $0.01(-0.79 - 0.81)$	Reduction still significant after
				validity –	LDL		adjustment for all other factors
				successfully piloted	calculated	Frequency of consumption continuous measure of	(magnitude not reported).
				Fruits – banana, orange,	(not	times per day (assuming units of 1 x per day)	Small non-significant reduction in HDL
				apple, papaya, watermelon,	measured)	1) adjusted for age and gender	(approx 0.5 mg/dL), reduced further
				melon, pear, tangerine	measureu	2) adjusted as '1', also BMI, WHR, education, income,	(0.13 mmol/L) when additionally
				molon, pour, ungernie		physical activity, smoking, alcoholism	adjusted for other variables
				Vegetables- watercress,		3) adjusted as '2' also consumption of other food	In Brazilian adults, increasing frequency of
				lettuce, endive, chicory,		groups	consumption of vegetables was associated with:
				cabbage, pumpkin, summer		* p<0.05, **p<0.01, p<0.001	 LDL level weakly (r=-0.11) (significant) at
				squash, beetroot, carrot,			the crude level
				chayote, fruit of the jiloeiro,		Note no description given of typical intakes in this	 Large significant reduction in LDL
				corn, cucumber, okra,		population	cholesterol (approx 3mg/dL) when
				tomato, French bean, kale,			adjusted only for age and gender
				cauli, radish swill chard, wild		Appears that for models 2 and 3 the HDL results were	 Reduction still significant after
				chicory, spinach potato,		erroneously typed in place of the LDL results	adjustment for all other factors
				sweet potato, cassava			(magnitude not reported).
							 Small (approx 0.13mg/dL), non-
							significant reductions in HDL
							Virtually no change (approx 0.01mg/dL
							increase) (not significant) in HDL when
							additionally adjusted for other non
							dietary variables
							Issues:
							Calculation of LDL – potential misclassification
							with bias towards null
							Units for frequency of fruit and vegetable intake
							unclear
							Magnitude of adjusted estimates unknown
							Quality rating: B
	L		I	1	l	L	Quanty running. D

Appendix 7 cont'd: Fruits, Vegetables and CHD Bio	omarkers – Cross-sectional Studies
---	------------------------------------

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Chrysohoou et al., 2004 Greece ATTICA study Biomarker Study #17	Cross sectional population based	n=1128 adult men and 1154 women Sampling: multistage, random stratified by age and gender 68% participation rate, representative sample Exclusions: renal failure, liver disease, CVD, chronic obstructive pulmonary disease, use of drugs that alter homocysteine	2001- 2002	intake of fruits, vegetables FFQ validated for fat, etOH, and protein; also vegetables (test-retest) Included: Fresh & frozen vegetables, fresh fruit Excluded: mixed dishes, canned foods	plasma homocysteine 12h fasting used controlled collection, storage and processing procedures Total homocysteine by fluorescence polarization immunoassay.	Correlations between plasma homocysteine and intake of: fruit (r=-0.12, p=0.006) vegetables (r=-0.15, p=0.02)	 In adult men and women, plasma homocysteine levels were correlated: weakly and inversely with fruits (r=- 0.12) (significant), although weakly weakly and inversely with vegetables (r=-0.15, p=0.02) (significant), although weakly inversely and significantly (p<0.05) after adjustment for potential confounding factors [age, smoking, education, income, alcohol and coffee intake, BMI, systolic & diastolic BP, glucose, serum cholesterol] Issues: Magnitude of adjusted estimates unclear. Results apply to types of fruits (fresh) and vegetables (fresh and frozen) in study

Study	Design	Participants	Duration	Dietary Measures	Outcome	Results	Comments
Gao et al 2004 United States MHAES Biomarker Study #18	Cross- sectional	445 Hispanic and 154 Non Hispanic white adults ≥60y in Massachusetts (Hispanic and non Hispanic from same neighbourhoods) Note many had history of one or more CVD conditions – heart attack stroke, other heart disease, hypertension Representative sample	1993 - 1997	Fruit and vegetable intake (quartiles) Semi-Quantitative FFQ Validated for use in this population Fruits: apples, pears, bananas, peaches, cantaloupe, watermelon, strawberries, mangoes, oranges grapefruit other fruit, orange or grapefruit juice, other 100% juice. Vegetables: tomatoes, string beans, peas, broccoli, cauliflower, spinach, mustard greens, cole slaw, carrots, green salad, avocado, winter squash other vegetables, dried beans, beans with rice, chili with beans, peas with rice, vegetable soups and homemade soups	Plasma C- reactive protein, total plasma homocysteine , clinically elevated C- reactive Protein>10mg /dL, high homocysteine >10.4μmol/L for women & >11.4μmol/L for men 12h fasting blood samples, used controlled collection nad storage procedures	Adjusted Mean ± SEM of Plasma CRP and Hcy in Elderly Hispanic Men and Women by quartile of intake of fruits and vegetables Quartile C-reactive Homo- (median intake) Quartile C-reactive Homo- (median intake) Q1 (1.4 times/d) 4.8 ± 1.1 11.6 ± 1.0 Q2 (2.7 times/d) 4.8 ± 1.1 11.0 ± 1.0 Q3 (3.8 times/d) 4.5 ± 1.1 11.0 ± 1.0 Q4 (5.5 times/d) 3.9 ± 1.1* 10.5 ± 1.0* p trend ^b 0.010 0.033* a adjusted for age, sex, ethnicity, BMI, diabetes, hypertension, smoking, alcohol, vitamin supplement use, energy intake, frequency consumption meat, cereal, dairy products, use of aspirin, NDAIDs, antihypertensives, diuretics, or CVD medications, hormones b C-Reactive Protein model also adjusted for Homocysteine and vice versa Means and SEM presented are adjusted	Considering other risk factors, in an elderly population, frequent intake (av. 5.5 times/d vs 1.4 times/d of fruits and vegetables) is associated with: • ≈ 1mg/L lower plasma C-reactive protein (significant); dose response relationship • ≈ 1µmol/L lower plasma homocysteine (significant); dose response relationship • For each serving intake adjusted odds ratio for high plasma CRP was 0.79 (0.65-0.79) (ie reduced risk approx 20%) • For each serving intake adjusted odds ratio for high plasma homocysteine was 0.83 (0.72-0.96) (ie reduced risk approx 20%) Issues: could not measure very low <0.6mg/L CRP concentrations – likely effect to underestimate, not overestimate associations cut off for high C-reactive protein can predict long term outcomes after coronary events cut off for high homocysteine based on 95 th percentile for young adults
							Quality Rating: A